

LANE REGIONAL AIR PROTECTION AGENCY TITLE V OPERATING PERMIT REVIEW REPORT

1010 Main Street Springfield, OR 97477

Seneca Sawmill Company, LLC

Permit No. 207459

90201 Highway 99N Eugene, Oregon 97402

Website: https://senecasawmill.com/

Source Information:

Primary SIC	2421 - Sawmill/Planing Mill
Secondary SIC	
Primary NAICS	321113 - Sawmills
Secondary NAICS	
Source Categories	B:62. – Sawmills and/or
(LRAPA title 37,	planing mills 25,000 or more
Table 1)	board feet/maximum 8 hour
·	finished product

	C. 5. – All sources having the potential to emit more than 100 tons or more of any regulated pollutant, except GHG, in a year
Public Notice Category	III

Compliance and Emissions Monitoring Requirements:

Unassigned Emissions	Y
Emission Credits	N
Compliance Schedule	N
Source Test Date(s)	N

COMS	N
CEMS	N
Ambient monitoring	N

Reporting Requirements

Annual Report (due date)	3/1
Semi-Annual Report (due date)	3/1, 9/1
Greenhouse Gas (due date)	3/31
Monthly Report (due dates)	N

Quarterly Report (due dates)	N
Excess Emissions Report	Y
Other Reports (due date)	
- LRAPA title 44 Report	2/15

Air Programs

All Trograms	
NSPS (list subparts)	Dc, IIII
NESHAP (list subparts)	A, ZZZZ,
	DDDD,
	DDDDD
CAM	N
Regional Haze (RH)	N
TACT	N
Part 68 Risk Management	N
Cleaner Air Oregon (CAO)	Y
Synthetic Minor (SM)	N

SM-80	N
Title V	Y
Major FHAP Source	Y
Federal Major Source	N
Type A State New Source Review	N
Type B State New Source Review	N
Prevention of Significant	N
Deterioration (PSD)	
Nonattainment New Source Review	N
(NNSR)	

TABLE OF CONTENTS

LIST OF ABBREVIATIONS THAT MAY BE USED IN THIS REVIEW REPORTREPORT	3
INTRODUCTION	4
FACILITY DESCRIPTION	4
GENERAL BACKGROUND INFORMATION	5
EMISSION UNIT AND POLLUTION CONTROL DEVICE IDENTIFICATION	6
ALTERNATE OPERATING SCENARIOS	9
AGGREGATE INSIGNIFICANT EMISSIONS	9
CATEGORICALLY INSIGNIFICANT ACTIVITIES	9
EMISSION LIMITS AND STANDARDS, TESTING, MONITORING, AND RECORDKEEPING	11
EMISSION LIMITS FOR INSIGNIFICANT ACTIVITIES	14
FEDERAL REQUIREMENTS	15
Chemical Accident Prevention Provisions Stratospheric Ozone-Depleting Substances National Emission Standards for Hazardous Air Pollutants (NESHAP) New Source Performance Standards (NSPS) Toxics Release Inventory (TRI) COMPLIANCE ASSURANCE MONITORING	15 15 15 19 21 2
PLANT SITE EMISSION LIMITS	24
SIGNIFICANT EMISSION RATES	25
UNASSIGNED EMISSIONS AND EMISSION REDUCTION CREDITS	25
HAZARDOUS AIR POLLUTANTS/TOXIC AIR CONTAMINANTS	25
TITLE V PERMIT CHANGE LOG	27
GENERAL RECORDKEEPING REQUIREMENTS	27
GENERAL REPORTING REQUIREMENTS	28
COMPLIANCE HISTORY	28
SOURCE TEST RESULTS	29
PUBLIC NOTICE	29
PUBLIC COMMENT PROCESS PERMIT CHANGES	31
EPA REVIEW	32
FMISSION DETAIL SHEETS	33

Seneca Sawmill Company, LLC Permit No. 207459

Expiration Date: August 1, 2029

Page 3 of 45 Review Report

LIST OF ABBREVIATIONS THAT MAY BE USED IN THIS REVIEW REPORT

ACDP	Air Contaminant Discharge Permit	ODEQ	Oregon Department of Environmental
AQMA	Air Quality Management Area	ODLQ	Quality
Act	Federal Clean Air Act	ORS	Oregon Revised Statutes
ASTM	American Society of Testing and	O&M	Operation and maintenance
	Materials	Pb	Lead
Btu	British thermal unit	PCD	Pollution Control Device
CAM	Compliance Assurance Monitoring	PM	Particulate matter
CAO	Cleaner Air Oregon	$PM_{2.5}$	Particulate matter less than 2.5
CEMS	Continuous Emissions Monitoring	210	microns in size
	System	PM_{10}	Particulate matter less than 10
CFR	Code of Federal Regulations	10	microns in size
CI	Compression Ignition	ppm	Parts per million
CMS	Continuous Monitoring System	PSEL	Plant Site Emission Limit
CO	Carbon Monoxide	psia	pounds per square inch, actual
CO_2	Carbon dioxide	PTE	Potential to Emit
CO_2e	Carbon dioxide equivalent	RATA	Relative Accuracy Testing Audit
COMS	Continuous Opacity Monitoring	RICE	Reciprocating Internal Combustion
	System		Engine
CPDS	Certified Product Data Sheet	SACC	Semi-Annual Compliance
CPMS	Continuous parameter monitoring		Certification
	system	SCEMP	Surrogate Compliance Emissions
DEQ	Department of Environmental Quality		Monitoring Parameter
dscf	Dry standard cubic feet	Scf	Standard cubic foot
EF	Emission factor	SER	Significant emission rate
EPA	US Environmental Protection Agency	SERP	Source emissions reduction plan
EU	Emissions Unit	SI	Spark Ignition
FCAA	Federal Clean Air Act	SIC	Standard Industrial Code
FHAP	Federal Hazardous Air Pollutant as	SIP	State Implementation Plan
	defined by LRAPA title 12	SO_2	Sulfur dioxide
ft^2	Square foot	ST	Source test
FSA	Fuel sampling and analysis	TAC	Toxic air contaminant as defined by
GHG	Greenhouse Gas		OAR 340-245-0020(56)
gr/dscf	Grain per dry standard cubic feet (1	TACT	Typically Achievable Control
C	pound = 7000 grains)		Technology
HCFC	Halogenated Chlorofluorocarbons	TBI	To be installed
ID	Identification number or label	TPY	Tons per year
I&M	Inspection and maintenance	VE	Visible emissions
LAER	Lowest Achievable Emission Rate	VMT	Vehicle miles traveled
LRAPA	Lane Regional Air Protection Agency	VOC	Volatile organic compounds
MACT	Maximum Achievable Control	VHAP	Volatile hazardous air pollutant
	Technology	Year	A period consisting of any 12
MM	Million		consecutive calendar months
MMBtu	Million British thermal units		
MW	Megawatts		
NA	Not applicable		
NESHAP	National Emission Standards for		
	Hazardous Air Pollutants		
NO_x	Nitrogen oxides		
NSPS	New Source Performance Standards		
NSR	New Source Review		
O_2	Oxygen		
OAR	Oregon Administrative Rules		

Permit No. 207459

Expiration Date: August 1, 2029

Page 4 of 45 Review Report

INTRODUCTION

- 1. Seneca Sawmill Company, LLC ("SSC" or "the facility") is an existing facility applying for an initial Title V federal operating permit. Upon issuance, the Title V federal operating permit will be valid for 5 years.
 - 1.a. <u>Information relied upon</u>: The initial permit is based upon the Title V federal operating permit application received September 13, 2023 (No. 69807) and the modification/Cleaner Air Oregon application received January 15, 2024 (70456) and later correspondence.
- 2. The initial Title V federal operating permit incorporates a Type 3 change under LRAPA 34-035 authorized under a separate modified Standard ACDP. See the review report for the modified Standard ACDP for more information on this modification.
- 3. In accordance with OAR 340-218-0120(1)(f), this review report is intended to provide the legal and factual basis for the draft permit conditions. In most cases, the legal basis for a permit condition is included in the permit by citing the applicable regulation. In addition, the factual basis for the requirement may be the same as the legal basis. However, when the regulation is not specific and only provides general requirements, this review report is used to provide a more thorough explanation of the factual basis for the draft permit conditions.

FACILITY DESCRIPTION

- 4. The current facility uses up to five (5) baghouses and one (1) target box with a filter to control particulate matter emissions from the sawmill and planing mill activities. The facility has eight (8) dry kilns for reducing the moisture content of green dimensional and stud lumber. The facility has one (1) installed 50 MMBtu per hour natural gas-fired boiler and is authorized to construct two (2) more identical natural gas-fired boilers to provide steam for the dry kilns. The facility also has an emergency generator for the administrative building and a gasoline dispensing facility consisting of a 6,000 gallon tank and a 2,000 gallon tank. The facility began operation at this location in 1954.
- 5. This initial Title V operating permit also incorporates a number of modifications to the facility as part of an upgrade and modification project authorized under the modified Standard ACDP, including:
 - 5.a. The four (4) existing stud dry kilns will be replaced with eight (8) new stud dry kilns. The four (4) existing dimensional dry kilns will remain unchanged. There will be 12 dry kilns total at the site after the modification is complete. The authority to construct two (2) dry kilns under the Standard ACDP dated 09/20/2022 has been superseded by this request.
 - 5.b. The sawmill and planing activities will be relocated, replaced, rebuilt and/or reconfigured, and include the following changes in control devices:
 - 5.b.i. The previously authorized Mill A Planer Baghouse No. 2 (EP-02B) will not be built.
 - 5.b.ii. The Stud Mill Sawdust Baghouse (EP-06) will be relocated but otherwise remain unchanged.
 - 5.b.iii. The Stud Mill Planer Shaving Baghouse (EP-06) will be replaced with a new baghouse in a different location.
 - 5.b.iv. The Mill A Sawdust Baghouse (EP-08) will be re-purposed to serve the Planer Trim Saw Sawdust.
 - 5.c. The Planer Knife Grinding Cyclone (EP-04) and Mill A Grinder Cyclone (EP-07) will be removed. A new Mill Grinding Cyclone and Baghouse (EP-013) will replace the Mill A Grinder Cyclone (EP-07) in a new location.
 - 5.d. A new fabrication shop will be constructed in the northwest corner of the property. The significant emission units in the new fabrication shop will include:
 - 5.d.i. A paint booth (EP-015) for maintenance and project related painting.
 - 5.d.ii. A plasma cutting table for fabrication support activities. The plasma cutting table will include an accessory oxy-acetylene torch head for cutting thicker materials.

Page 5 of 45 Review Report

- 5.d.iii. General welding activities will be performed in the fabrication shop for maintenance purposes.
- 5.e. A new 12,000-gallon diesel fuel tank will be installed for on-site mobile equipment use. This emission unit is considered a categorically insignificant activity under title 12.
- 6. The facility is located in an area that is generally flat. The property to the north of the facility is primarily agricultural and mixed industrial/commercial. To the east is a mixed commercial and residential area. To the south is SSC and Highway 99. To the west is a commercial area and Highway 99.

GENERAL BACKGROUND INFORMATION

- 7. SSC is a Title V major source because potential emissions of VOC exceed 100 tons per year. In addition, as discussed below, SSC is a major source of federal hazardous air pollutants (FHAP).
- 8. For pollutants other than CO and PM₁₀, the proposed PSELs are less than the Major NSR threshold of 250 TPY per regulated pollutant for a non-listed source. For CO and PM₁₀, the source is located in a maintenance area. The proposed PSELs for CO and PM₁₀ are less than the Major NSR threshold of 100 TPY. GHGs do not determine federal major source applicability.
- 9. SSC is contiguous with Seneca Sustainable Energy ("SSE" Permit No. 206470). The two (2) facilities are considered to be separate sources, as this term is defined in title 12, because while they are located on contiguous or adjacent properties and are owned or operated by the same person or by persons under common control, their primary business activities do not belong to the same two-digit SIC code. LRAPA has previously determined that SSC is not a support facility for SSE because SSC does not provide at least 50% of the cellulosic biomass combusted by SSE on an annual basis.
- 10. SSC and SSE are considered one (1) source for the purposes of determining whether the facilities are a major source of federal hazardous air pollutants (FHAP), as defined in title 12, because they are located within a contiguous area and are under common control. SSC is considered a major source of FHAP as of the issuance of the Standard ACDP dated 09/20/2022.
- 11. The facility is located in an area that has been designated as attainment or unclassified for all criteria pollutants. The facility is inside the Eugene-Springfield UGB as defined in LRAPA 29-0010 which designates the Eugene-Springfield CO and PM₁₀ maintenance areas. The facility is also located inside the Eugene-Springfield UGB as described in the current Eugene-Springfield Metropolitan Area General Plan, as amended. The facility is located within 100 kilometers of two (2) Class I air quality protection areas: Diamond Peak Wilderness, Mount Washington and Three Sisters Wilderness area.
- 12. LRAPA has reviewed and issued the following permitting actions to this facility:

Date Approved/Valid	Permit Action Type	Description
01/01/1979 - 12/31/1984	ACDP	
01/01/1985 - 12/31/1994	ACDP	
01/26/1996 - 01/25/2001	SM ACDP	Added synthetic minor conditions
06/19/1998	ACDP Addendum No. 1	Added baghouse
01/26/2001 - 01/25/2006	ACDP	Renewal
01/26/2006 - 01/25/2011	ACDP	Renewal
05/12/2009	ACDP Addendum No. 1	Change the permit type and fee basis
09/04/2009	ACDP Modification	Technical permit modification to include FHAP limitations
09/26/2011 - 09/26/2016	ACDP	Renewal

Permit No. 207459

Expiration Date: August 1, 2029

Date Approved/Valid	Permit Action Type	Description
12/03/2012	ACDP Addendum No. 1	Add one (1) dry kiln
01/22/2013	ACDP Addendum No. 2	Add the word "shall" in the first sentence of Condition 7.a.
04/07/2015 - 04/07/2020	ACDP	Renewal and Non-NSR/PSD complex technical modification
09/30/2020	NC-207459-A20	Approval to Construct two (2) dry kilns
10/26/2020	ACDP Addendum No. 1	Add two (2) dry kilns
01/04/2021	NC-207459-B20	Approval to Construct two (2) baghouses to control emissions from EP-05 at Stud Mill and EP-08 at Mill A
09/20/2022	ACDP	Renewal and Type 4 change due to facility expansion and boiler installation.
06/06/2024	ACDP Addendum No. 1	Type 3 change.
Upon Issuance	Title V	Initial Title V operating permit.

EMISSION UNIT AND POLLUTION CONTROL DEVICE IDENTIFICATION

13. The existing emission units regulated by the permit are the following:

Emission Unit ID	Emission Unit Description	Pollution Control Device Description (PCD ID)	Installed / Last Modified
Significant I	Emission Units		
		Main Baghouse (EP-01) Mill A Planer Baghouse No. 1 (EP-02A)	<2015 <2015
MH	Sawmill/Planing Mill Activities	Stud Mill Sawdust Baghouse (EP-05)	< 2015
IVITI	Sawinii/Flaining Will Activities	Stud Mill Planer Shaving Baghouse (EP-06)	< 2015
		Mill A Sawdust Baghouse (EP-08)	< 2015
		One (1) Target Box with Filter (EP-11)	< 2015
K1	Dimensional Dry Kiln	None	>2015
K2	Dimensional Dry Kiln	None	>2015
K3	Dimensional Dry Kiln	None	>2015
K4	Dimensional Dry Kiln	None	>2015
K5	Stud Dry Kiln (S1)	None	2011
K6	Stud Dry Kiln (S2)	None	2012
K7	Stud Dry Kiln (S3)	None	2014
K8	Stud Dry Kiln	None	>2015
Boiler-3	One (1) 50 MMBtu/hr Natural Gas-Fired Boiler	None	2016
Boiler-4	One (1) 50 MMBtu/hr Natural Gas-Fired Boiler	None	TBI
Boiler-5	One (1) 50 MMBtu/hr Natural Gas-Fired Boiler	None	TBI
GDF	Gasoline Dispensing Facility	None	1980's
Categoricall	y Insignificant Activities		
CIA-1	Diesel-Fired 150 kW Emergency Generator	None	2016
CIA-2	Diesel Storage Tanks	None	1980's

Page 7 of 45 Review Report

14. <u>Sawmill/Planing Mill Activities</u>

The existing board cutting and planing activities generate particulate matter in the form of wood dust and shavings. The particulate matter emissions from these processes are controlled by up to five (5) baghouses and one (1) target box with filter. The criteria pollutant emissions from these sources are based on emission factors from Table 13.2 of the DEQ General ACDP for sawmills, planing mills, millwork, plywood manufacturing, and/or veneer drying (AQGP-010 expiring 10/01/2027). These sources are not expected to have any significant FHAP or CAO TAC emissions.

15. Four (4) Dimensional Dry Kilns and Four (4) Stud Dry Kilns

The facility currently uses four (4) dry kilns to dry dimensional lumber and four (4) dry kilns to dry stud lumber. As part of the 2022 ACDP renewal and modification, the facility requested the authority to install two (2) additional dry kilns for stud lumber. The two (2) additional dry kilns will not be built under this authority. The criteria pollutant, FHAP and CAO TAC emissions from these processes are based on emission factors from DEQ AQ-EF09 – DEQ HAP and VOC Emission Factors for Lumber Drying, 2021.

16. One (1) 50 MMBtu/hr Natural Gas-Fired Boiler (Boiler-3)

One (1) 50 MMBtu/hr Natural Gas-Fired Boiler (Boiler-4)

One (1) 50 MMBtu/hr Natural Gas-Fired Boiler (Boiler-5)

The facility currently uses one (1) 50 MMBtu/hr boiler (Boiler-3) installed in 2016 to dry dimensional lumber if SSE is not operational. As part of the 2022 ACDP renewal and modification, the facility was authorized to install two (2) additional natural gas-fired boilers rated at 50 MMBtu/hr each, to be known as Boiler-4 and Boiler-5. Each boiler is capable of generating 40,000 pounds per hour of steam. These boilers will be used to dry dimensional lumber if SSE is not operational. The criteria pollutant emissions from these sources are based on emission factors derived from DEQ AQ-EF05 – Emission Factors Gas Fired Boilers, US EPA 40 CFR 98, Tables C-1 and C-2, and manufacturer's guarantees. The FHAP or CAO TAC emissions from these sources are based on emission factors from DEQ's 2020 ATEI Combustion EF Tool.

17. One (1) Gasoline Dispensing Facility

The facility has one (1) 6,000 gallon gasoline tank and one (1) 2,000 gallon gasoline tank that are used to fuel company vehicles. These tanks represent one (1) gasoline dispensing facility (GDF). The criteria pollutant, FHAP and CAO TAC emissions from this source are based on emission factors developed by LRAPA that take into account the percentage of vehicles in Lane County equipped with Onboard Refueling Vapor Recovery.

New or Modified Emission Units

18. The new or modified emission units regulated by the permit are the following:

Emission Unit ID	Emission Unit Description	Pollution Control Device Description (PCD ID)	Installed / Last Modified
Significant I	Emission Units		
		Main Baghouse (EP-01)	<2015
		Dimensional Planer Baghouse No. 1 (EP-02)	<2015
MH	Sawmill/Planing Mill Activities	Stud Mill Planer Baghouse No. 1 (EP-05)	TBI
MIT		Stud Mill Planer Baghouse No. 2 (EP-06)	TBI
		Planer Trim Saw Sawdust Baghouse (EP-08)	TBI
		One (1) Target Box with Filter (EP-11)	TBI
K5-K12	Eight (8) Stud Dry Kilns	None	TBI
MG	Mill Grinding	Mill Grinding Cyclone and Baghouse (EP-013)	TBI
Aggregate In	nsignificant Activities		
AIA-1	Plasma Table with Torch	Semi-dry Plasma Table	TBI
AIA-2	Paint Booth	Dry filters	TBI
AIA-3	Welding and Fabrication	None	TBI
Categoricall	y Insignificant Activities		

Permit No. 207459

Expiration Date: August 1, 2029

Emission Unit ID	Emission Unit Description	Pollution Control Device Description (PCD ID)	Installed / Last Modified
CIA-2	Diesel Storage Tanks	None	None

19. <u>Sawmill/Planing Mill Activities (Mills)</u>

The facility is proposing to relocate, replace, rebuild and/or reconfigure the board cutting and planing activities at the facility under the authority of the modified Standard ACDP. These activities generate particulate matter in the form of wood dust and shavings. The particulate matter emissions from these modified processes will be controlled by up to five (5) baghouses and one (1) target box with filter. The emission units controlled by EP01 and EP-02 are not considered modified for regulatory applicability purposes but are listed in the table above for convenience. The criteria pollutant emissions from these sources are based on emission factors from Table 13.2 of the DEQ General ACDP for sawmills, planning mills, millwork, plywood manufacturing, and/or veneer drying (AQGP-010 expiring 10/01/2027). These sources are not expected to have any significant FHAP or CAO TAC emissions.

20. Eight (8) Dry Kilns

The facility currently uses four (4) dry kilns to dry dimensional lumber and four (4) dry kilns to dry stud lumber. As part of the modification authorized under the modified Standard ACDP, the facility will be replacing the four (4) existing stud kilns with eight (8) new stud kilns in a new location. The throughput capacity of a single new stud dry kiln will be equivalent to the throughput of a single existing stud dry kiln. The steam for the dry kilns is primarily provided by SSE. The facility will use on-site natural gas-fired boilers to generate steam when SSE is not operational. The criteria, FHAP and CAO TAC emissions from these sources are based on emission factors from DEQ AQ-EF09 – DEQ HAP and VOC Emission Factors for Lumber Drying, 2021.

21. Mill Grinding

The facility currently sharpens cutting blades at the facility using grinding wheels. This process was previously considered a Categorically Insignificant Activity. As part of the modification authorized under the modified Standard ACDP, the facility intends to reconfigure this process and exhaust the grinding operations to a proposed Mill Grinding Cyclone and Baghouse (EP-013). The particulate matter emissions from this process assume an exit grain loading of 0.005 gr/dscf and a maximum baghouse airflow of 5,600 cubic feet per minute. The FHAP and CAO TAC emissions are based on lab sampling of the existing cyclone control device catch as a mass fraction that is multiplied against the potential PM emissions from the process. The hexavalent chromium content is assumed to be 5% of the total chromium content based on EPA's NEI Augmentation Profile Factors for NAICS 332212 Hand and Edge Tool Manufacturing.

22. Plasma Table with Torch

The facility is proposing to install a plasma cutting table for fabrication support activities in a proposed fabrication shop under the authority of the modified Standard ACDP. The plasma cutting table will include an accessory oxy-acetylene torch to cut thicker materials. The plasma cutting will occur directly above a water table which reduces emissions from the process. The criteria pollutant, FHAP and CAO TAC emissions from this source are based on "Emission of Fume, Nitrogen Oxides and Noise in Plasma Cutting of Stainless and Mild Steel" by Bromsen B. et al. (1994). Only mild steel will be cut using this process. This process is considered an aggregate insignificant activity under the Standard ACDP and a Toxic Emission Unit under Cleaner Air Oregon.

23. Paint Booth

The facility is proposing to install a paint booth in a proposed fabrication shop for maintenance and project-related painting under the authority of the modified Standard ACDP. The transfer efficiency of the paint spray guns is assumed to be at least 65% based on the use of high volume, low pressure (HVLP), airless, air-assisted airless (AAA), electrostatic spray gun technology or other spray gun technology that achieves a similar transfer efficiency as approved in writing by LRAPA. The criteria pollutant, FHAP, and CAO TAC emissions from this source are based on the materials the facility proposes to use and the limitations on

Permit No. 207459

Expiration Date: August 1, 2029

throughput requested by the facility. This process is considered an aggregate insignificant activity under the Standard ACDP and a Toxic Emission Unit under Cleaner Air Oregon.

24. Welding and Fabrication

The facility is proposing to perform welding in a proposed fabrication shop under the authority of the modified Standard ACDP. The welding criteria pollutant, FHAP and CAO TAC emission factors are based on DEQ's 2020 Air Toxics Emissions Inventory Welding Emission Factor Search Tool. For CAO TACs not in the tool, the facility used the San Diego Air Pollution Control District's Welding Operations methodology to develop emissions estimates. This process is considered an aggregate insignificant activity under the Standard ACDP and a Toxic Emission Unit under Cleaner Air Oregon.

25. On-Site Storage Tanks (Diesel and Gasoline)

The facility is proposing to add a new 12,000 gallon diesel storage tank to the existing collection of on-site fuel storage tanks under the authority of the modified Standard ACDP. This additional diesel storage tank will not change the categorically insignificant activity status of this process. As such, no emissions from the new diesel storage tank have been quantified.

ALTERNATE OPERATING SCENARIOS

26. SSC does not have any alternate operating scenarios.

AGGREGATE INSIGNIFICANT EMISSIONS

27. As listed above, SSC will have the following aggregate insignificant activities after modification of the facility under the authority of the proposed modified Standard ACDP:

Emission Unit ID	Emission Unit Description	Pollution Control Device Description (PCD ID)	Installed / Last Modified	
Aggregate In	Aggregate Insignificant Activities			
AIA-1	Plasma Table with Torch	Semi-dry Plasma Table	TBI	
AIA-2	Paint Booth	Dry filters	TBI	
AIA-3	Welding and Fabrication	None	TBI	

CATEGORICALLY INSIGNIFICANT ACTIVITIES

- 28. In addition to the categorically insignificant activities mentioned above, the facility has the following categorically insignificant activities on site:
 - Evaporative and tail pipe emissions from on-site motor vehicle operation
 - Distillate oil, kerosene, and gasoline fuel burning equipment rated at less than or equal to 0.4 million Btu/hr
 - Natural gas and propane burning equipment rated at less than or equal to 2.0 million Btu/hr
 - Distillate oil, kerosene, gasoline, natural gas or propane burning equipment brought on site for six months or less for maintenance, construction or similar purposes, such as but not limited to generators, pumps, hot water pressure washers and space heaters, provided that any such equipment that perform the same function as the permanent equipment, must be operated with the source's existing PSEL
 - Office activities
 - Janitorial activities
 - Personal care activities
 - Grounds-keeping activities including, but not limited to building painting and road and parking lot maintenance

Permit No. 207459

Expiration Date: August 1, 2029

Page 10 of 45 Review Report

- Instrument calibration
- Maintenance and repair shop
- Air cooling or ventilating equipment not designed to remove air contaminants generated by or released from associated equipment
- Refrigeration systems with less than 50 pounds of charge of ozone depleting substances regulated under Title VI, including pressure tanks used in refrigeration systems but excluding any combustion equipment associated with such systems
- Bench scale laboratory equipment and laboratory equipment used exclusively for chemical and physical analysis, including associated vacuum producing devices but excluding research and development facilities
- Temporary construction activities
- Warehouse activities
- Accidental fires
- Air vents from air compressors
- Electrical charging stations
- Instrument air dryers and distribution
- Fire suppression
- Routine maintenance, repair, and replacement such as anticipated activities most often associated with and performed during regularly scheduled equipment outages to maintain a plant and its equipment in good operating condition, including but not limited to steam cleaning, abrasive use, and woodworking
- Electric motors
- Storage tanks, reservoirs, transfer and lubricating equipment used for ASTM grade distillate or residual fuels, lubricants, and hydraulic fluids
- On-site storage tanks not subject to any New Source Performance Standard (NSPS), including underground storage tanks (UST), storing gasoline or diesel used exclusively for fueling of the facility's fleet of vehicles
- Natural gas, propane, and liquefied petroleum gas (LPG) storage tanks and transfer equipment
- Pressurized tanks containing gaseous compounds
- Storm water settling basins
- Fire suppression and training
- Paved roads and paved parking lots within an urban growth boundary
- Hazardous air pollutant emissions of fugitive dust from paved and unpaved roads except for those sources that have processes or activities that contribute to the deposition and entrainment of hazardous air pollutants from surface soils
- Health, safety, and emergency response activities
- Emergency generators and pumps used only during loss of primary equipment or utility service, including:

Diesel-fired 150 kW emergency generator (CIA-1): The facility has a diesel-fired generator to provide electrical power to the administrative building in the event of an interruption of power service. The generator is a 150 kW internal combustion engine installed in 2016. This emergency generator was installed after June 12, 2006 and is subject to the RICE NESHAP (subpart ZZZZ) and the RICE NSPS (subpart IIII). This activity is considered to be a Categorically Insignificant Activity (CIA) as per the definition of CIA in LRAPA title 12, Item UU.

- Non-contact steam vents and leaks and safety and relief valves for boiler steam distribution systems
- Non-contact steam condensate flash tanks
- Non-contact steam vents on condensate receivers, deaerators and similar equipment
- Boiler blowdown tanks
- Oil/water separators in effluent treatment systems

Permit No. 207459

Expiration Date: August 1, 2029

EMISSION LIMITS AND STANDARDS, TESTING, MONITORING, AND RECORDKEEPING

- 29. Section 70.6(a)(3) of the federal Title V permit rules requires all monitoring and analysis procedures or test methods required under applicable requirements be contained in Title V permits. In addition, where the applicable requirement does not require periodic testing or monitoring, periodic monitoring must be prescribed that is sufficient to yield reliable data from the relevant time period that is representative of the facility's compliance with the permit.
- 30. The Title V permit does include monitoring for all requirements that apply to significant emissions units in addition to the testing requirements in the permit. Periodic visible emissions observations are required for all particulate emissions sources. In addition, the permit includes monitoring of operating parameters for the processes and pollution control devices. It is assumed that as long as these processes and controls are properly operated, the emissions levels will be below the emissions limits specified in the permit.

Nuisance, Deposition and Other Emission Limitations

- 31. Under subsection 49-010(1), the permittee must not cause or allow air contaminants from any source subject to regulation by LRAPA to cause a nuisance. Compliance is demonstrated through documentation of all complaints received by the facility from the general public and following procedures to notify LRAPA of receipt of these complaints.
- 32. Under section 32-055, the permittee must not cause or permit the emission of particulate matter which is larger than 250 microns in size at sufficient duration or quantity as to create an observable deposition upon the real property of another person. Compliance is demonstrated through documentation of all complaints received by the facility from the general public and following procedures to notify LRAPA of receipt of these complaints.
- 33. Under subsection 32-090(1), the permittee must not discharge from any source whatsoever such quantities of air contaminants which cause injury or damage to any persons, the public, business or property; such determination is to be made by LRAPA. Compliance is demonstrated through documentation of all complaints received by the facility from the general public and following procedures to notify LRAPA of receipt of these complaints.

Emission Limitations and Monitoring

- 34. The facility is subject to the general requirements for fugitive emissions under section 48-015. The facility must not have visible emissions that leave the property of a source for a period or periods totaling more than 18 seconds in a six (6) minute period. The facility must follow, but is not limited to, the list of reasonable precautions under paragraphs 48-015(1)(a)-(g). Compliance will be demonstrated through a survey of facility fugitive emissions using EPA Method 22 to be completed at least once a month. The permittee is required to take corrective action if any visible emissions are identified. If requested by LRAPA, the facility must develop a fugitive emission control plan.
- 35. The facility is subject to the visible emission limitations under subsection 32-010(3). For sources, other than wood-fired boilers, no person may emit or allow to be emitted any visible emissions that equal or exceed an average of 20 percent opacity. Compliance is demonstrated through a plant survey of visible emissions using EPA Method 22 to be completed at least once a month. The permittee is required to take corrective action if any visible emissions are identified, and contact LRAPA or conduct an EPA Method 9 test if the visible emissions cannot be eliminated. In addition, the permittee must prepare and maintain an Operation & Maintenance Plan (O&M Plan) for all particulate matter emission control devices at the facility as discussed in Item 44.
- 36. The non-fuel burning equipment at this source that emit particulate matter are subject to particulate matter emission limitations under subsection 32-015(2):

Permit No. 207459

Expiration Date: August 1, 2029

Page 12 of 45 Review Report

- 36.a. For sources installed, constructed, or modified on or after June 1, 1970 but prior to April 16, 2015 for which there are not representative compliance source test results, the particulate matter emission limit is 0.14 grains per dry standard cubic foot; and
- 36.b. For sources installed, constructed, or modified after April 16, 2015, the particulate matter emission limit is 0.10 grains per dry standard cubic foot.
- 37. Compliance demonstration with the particulate matter emission limitations under Item 36 will include:
 - 37.a. Sawmill/Planing Mill Activities: The permittee must control particulate matter emissions from these activities using baghouse(s) and a target box. The permittee must monitor and record pressure drop across each baghouse controlling particulate matter emissions at least once per week. If the pressure drop is not within the operating range listed in the permit, the permittee must take corrective action. The permittee must prepare and maintain an O&M Plan for each particulate matter emission control device associated with this process as discussed in Item 44.
 - 37.b. Dry Kilns: The permittee must perform a plant survey of visible emissions as discussed in Item 35 that includes these emission units.
 - 37.c. Mill Grinding: The permittee must control particulate matter emissions from this emission unit using a baghouse. The permittee must monitor and record pressure drop across the baghouse controlling particulate matter emissions from this emission unit at least once per week. If the pressure drop is not within the operating range listed in the permit, the permittee must take corrective action. The permittee must prepare and maintain an O&M Plan for each particulate matter emission control device associated with this process as discussed in Item 44.
 - 37.d. Insignificant Emission Units: Categorically insignificant activities and aggregate insignificant activities do not require the same level of compliance demonstration as significant emission units. Compliance for these emission units with the particulate matter emission limitation, as applicable, will be demonstrated by compliance with the visible emission limitations as discussed in Item 35.
- 38. The facility is subject to the process weight rate emission limitations under subsection 32-045(1) for any emission unit that has the potential to emit particulate matter. No person may cause, suffer, allow, or permit the emissions of particulate matter in any one (1) hour from any process in excess of the amount shown in section 32-8010, for the process weight rate allocated to such process. Process weight is the total weight of all materials introduced into a piece of process equipment. Liquid and gaseous fuels and combustion air are not included in the total weight of all materials.
- 39. Compliance demonstration with the process weight rate emission limitations under Item 38 will include:
 - 39.a. Sawmill/Planing Mill Activities: The permittee must control particulate matter emissions from these activities using baghouse(s) and a target box. The permittee must monitor and record pressure drop across each baghouse controlling particulate matter emissions at least once per week. If the pressure drop is not within the operating range listed in the permit, the permittee must take corrective action. The permittee must prepare and maintain an O&M Plan for each particulate matter emission control device associated with this process as discussed in Item 44.
 - 39.b. Dry Kilns: The permittee must perform a plant survey of visible emissions as discussed in Item 35 that includes these emission units.
 - 39.c. Mill Grinding: The permittee must control particulate matter emissions from these emission unit using a baghouse. The permittee must monitor and record pressure drop across the baghouse controlling particulate matter emissions from this emission unit at least once per week. If the pressure drop is not within the operating range listed in the permit, the permittee must take corrective action. The permittee must prepare and maintain an O&M Plan for each particulate matter emission control device associated with this process as discussed in Item 44.
 - 39.d. Insignificant Emission Units: Categorically insignificant activities and aggregate insignificant activities do not require the same level of compliance demonstration as significant emission units. Compliance for these emission units with the particulate matter emission limitation, as applicable, will be demonstrated by compliance with the visible emission limitations as discussed in Item 35.
- 40. The new and modified emission units at the facility were required under the modification of the Standard ACDP to demonstrate that the modification will not cause or contribute to a new exceedance of a NAAOS

adopted under title 50. The modification of the Standard ACDP included PM_{2.5} emission limitations and associated monitoring and recordkeeping for all emission units included in the air quality modeling, including Emission Unit K5 through K12, Emission Points EP05, EP06, and EP08 from Emission Unit MH, Emission Unit MG, Emission Unit AIA-1, Emission Unit AIA-2, and Emission Unit AIA-3.

- 41. Compliance demonstration with the PM_{2.5} emission limitations under Item 40 will include:
 - 41.a. Emission Points EP05, EP06, and EP08 from Emission Unit MH: The permittee must control particulate matter emissions from these emission unit using a baghouse. The permittee must monitor and record pressure drop across each baghouse controlling particulate matter emissions at least once per week. If the pressure drop is not within the operating range listed in the permit, the permittee must take corrective action. The permittee must prepare and maintain an O&M Plan for each particulate matter emission control device associated with this process as discussed in Item 44.
 - 41.b. Emission Unit K5 through K12: The permittee must keep and maintain documentation of the calculation of the maximum hourly particulate matter emission rate from each emission unit K5 through K12.
 - 41.c. Emission Unit MG: The permittee must control particulate matter emissions from these emission unit using a baghouse. The permittee must monitor and record pressure drop across the baghouse controlling particulate matter emissions from this emission unit at least once per week. If the pressure drop is not within the operating range listed in the permit, the permittee must take corrective action. The permittee must prepare and maintain an O&M Plan for each particulate matter emission control device associated with this process as discussed in Item 44.
 - 41.d. Insignificant Emission Units:
 - 41.d.i. Emission Unit AIA-1: The permittee must keep records of the total daily hours the plasma table with torch cuts metal for each day of operation and documentation of important production factors that affect the potential PM_{2.5} emissions from this process.
 - 41.d.ii. Emission Unit AIA-2: The permittee must keep records of total number of gallons of coating used for each day the paint booth is operated and documentation of important production factors that affect the potential PM_{2.5} emissions from this process.
 - 41.d.iii. Emission Unit AIA-3: The permittee must keep records of total number of pounds of welding wire/rod used in any day and documentation of important production factors that affect the potential PM_{2.5} emissions from this process.
- 42. Boiler-3, Boiler-4, and Boiler-5 are subject to particulate matter emission limitations under subsection 32-030(2). For sources installed, constructed, or modified after April 16, 2015, the particulate matter emission limit is 0.10 grains per dry standard cubic foot. Compliance with this limitation will be demonstrated through compliance with the requirements of 40 CFR part 63 subpart DDDDD National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (as discussed later in this review report) and limiting these emission units to only combusting natural gas.
- 43. The GDF is subject to the requirements under OAR 340-244-0231 through OAR 340-244-0252. As defined under this regulation, the GDF is considered an existing GDF. The facility is regulated as a GDF 3 because the annual throughput of gasoline is at least 120,000 gallons but less than 600,000 gallons. Because the GDF is considered an existing GDF, the GDF is subject to work practice and submerged fill requirements.
- 44. Under section 32-007, the facility must prepare an O&M Plan for each particulate matter control device at the facility. If the O&M Plan is updated, the facility must submit the updated copy to LRAPA for review. If LRAPA determines the plan is deficient, LRAPA may require the facility to amend the plan. At a minimum, the O&M Plan must include inspection schedules for each baghouse and target box. The O&M Plan must identify procedures for recording the date and time of any inspections, identification of the equipment inspected, the results of the inspection, and the actions taken if repairs or maintenance are necessary.

Typically Achievable Control Technology (TACT)

Permit No. 207459

Expiration Date: August 1, 2029

Page 14 of 45 Review Report

- 45. Subsection 32-008(1) requires an existing unit at a facility prior to January 1, 1994, to meet TACT if the emission unit meets the following criteria: The emission unit is not already subject to emission standards for the regulated pollutant under title 30, title 33, title 38, or title 46 at the time TACT is required; the source is required to have a permit; the emission unit has emissions of criteria pollutants equal to or greater than five (5) tons per year of particulate or ten (10) tons per year of any gaseous pollutant; and LRAPA determines that air pollution control devices and emission reduction processes in use for the emissions do not represent TACT and that further emission control is necessary to address documented nuisance conditions, address an increase in emissions, ensure that the source is in compliance with other applicable requirements, or to protect public health or welfare or the environment.
 - 45.a. The following emission units are not subject to TACT because they do not have emissions equal to or greater than five (5) tons per year of particulate or ten (10) tons per year of any gaseous pollutant: the existing GDF.
- 46. Subsection 32-008(2) requires new units installed or existing emission units modified on or after January 1, 1994, meet TACT if the emission unit meets the following criteria: The emission unit is not subject to Major NSR or Type A State NSR in title 38, and applicable NSPS in title 46, or any other standard applicable to only new or modified sources in title 30, title 33, title 39, or title 46 for the regulated pollutant; the source is required to have a permit; if new, the emission unit has emissions of any criteria pollutant equal to or greater than one (1) ton per year of any criteria pollutant; if modified, the emission unit would have an increase in emissions of any criteria pollutant equal to or greater than one (1) ton per year; and LRAPA determines that the proposed air pollution control devices and emission reduction processes do not represent TACT
 - 46.a. The following emission units are not subject to TACT because they do not have emissions of any criteria pollutant equal to or greater than one (1) ton per year: Categorically Insignificant Activities, Aggregate Insignificant Activities.
 - 46.b. The existing and modified Sawmill/Planing Mill Activities consists of a number of emission units merged together for convenience of regulation. Most of the emission units included under the Sawmill/Planing Mill Activities category will not have emissions of any criteria pollutant equal to or greater than one (1) ton per year. The emissions from the Rail Chip Bin Target Box will have emissions of particulate matter equal to or greater than one (1) ton per year. While LRAPA has not performed a formal TACT determination for particulate matter from this emission unit, LRAPA has determined that the controls associated with this process likely meet TACT.
 - 46.c. The existing and proposed dry kilns have emissions of VOC equal to or greater than one (1) ton per year. While LRAPA has not performed a formal TACT determination for VOC from these emission units, EPA and LRAPA have determined that there are no control technologies currently used in practice or economically feasible for these dry kilns. TACT is considered to be current operations.
 - 46.d. Boiler-3, Boiler-4, and Boiler-5 will combust only natural gas and are or will be equipped with low NO_X burners that reduce NO_X and CO emissions. NO_X and CO emissions are the only regulated pollutants from these emission units that may be equal to or greater than one (1) ton per year. While LRAPA has not performed a formal TACT determination for NO_X and CO from these emission units, LRAPA has determined that low NO_X burners likely meet TACT for boilers of this size.
 - 46.e. Mill Grinding will have potential emissions of particulate matter equal to or greater than one (1) ton per year. While LRAPA has not performed a formal TACT determination for particulate matter from this emission unit, LRAPA has determined that the use of a baghouse control device likely meets TACT for this process.

EMISSION LIMITS FOR INSIGNIFICANT ACTIVITIES

47. As identified earlier in this Review Report, this facility has insignificant emissions units (IEUs) that include categorically insignificant activities and aggregate insignificant activities, as defined in LRAPA title 12 and/or OAR 340-200-0020. For the most part, the standards that apply to IEUs are for opacity and particulate matter. 40 CFR 70.6(a)(3) of the federal Title V permit rules, requires all monitoring and analysis procedures or test methods required under applicable requirements be contained in Title V permits. In addition, where the applicable requirement does not require periodic testing or monitoring, periodic monitoring must be

prescribed that is sufficient to yield reliable data from the relevant time period that is representative of the facility's compliance with the permit. However, the requirements to include in a permit testing, monitoring, recordkeeping, reporting, and compliance certification sufficient to assure compliance does not require the permit to impose the same level of rigor with respect to all emissions units and applicable requirement situations. It does not require extensive testing or monitoring to assure compliance with the applicable requirements for emissions units that do not have significant potential to violate emission limitations or other requirements under normal operating conditions. Where compliance with the underlying applicable requirement for an insignificant emission unit is not threatened by a lack of a regular program of monitoring and where periodic testing or monitoring is not otherwise required by the applicable requirement, then in this instance the status quo (i.e., no monitoring) will meet Section 70.6(a)(3). For this reason, this permit includes limited requirements for categorically insignificant activities and aggregate insignificant activities.

Categorically Insignificant Activity – Diesel-Fired 150 kW Emergency Generator (CIA-1)

48. The facility has one (1) 150 kW diesel-fired compression ignition (CI) reciprocating internal combustion engine (RICE) emergency generator for which construction commenced after July 11, 2005 and which is subject to the requirements under 40 CFR part 63 subpart ZZZZ - 40 CFR part 60 subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines. See the Federal Requirements section of this review report for more information.

FEDERAL REQUIREMENTS

Chemical Accident Prevention Provisions

49. The Title V permit includes standard language related to 40 CFR part 68 – Chemical Accident Prevention Provisions. Should the material storage rate at this facility subject this facility to 40 CFR part 68, the facility must satisfy all the applicable risk management requirements, including the development of a risk management plan.

Stratospheric Ozone-Depleting Substances

50. The facility does not manufacture, sell, distribute, or use in the manufacturing of a product any stratospheric ozone-depleting substances and the EPA 1990 Clean Air Act as amended, Sections 601-618, do not apply to the facility except that air conditioning units and fire extinguishers containing Class I or Class II substances must be serviced by certified repairmen to ensure that the substances are recycled or destroyed appropriately.

National Emission Standards for Hazardous Air Pollutants (NESHAP)

51. A facility that has potential emissions of FHAP greater than the major source thresholds of 10 tons per year of an individual FHAP or 25 tons per year of the aggregate of all FHAP is classified as a major source. SSC and SSE are considered a single stationary source for the purpose of determining whether the facilities are major sources of federal hazardous air pollutants (FHAP), as defined in LRAPA title 12, because they are located in a contiguous area and are under common control. SSC is considered a major source of FHAP as of the issuance of the Standard ACDP dated 09/20/2022

40 CFR part 63 subpart DDDD – National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products

52. SSC is a major source of FHAPs. As such, the eight (8) existing and the final proposed 12 dry kilns are subject to the requirements under 40 CFR part 63 subpart DDDD – National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products. Although this facility does not manufacture plywood or composite wood products, the definition of "plywood and composite wood products manufacturing facility" includes lumber kilns located at any facility. Because the facility is an affected

Permit No. 207459

Expiration Date: August 1, 2029

source that was constructed prior to January 9, 2003, and has not been reconstructed as defined in 40 CFR 63.2 since that time, the affected source is considered to be existing under this regulation. Under 40 CFR 63.2233(c), the facility was required to be in compliance with this regulation upon initial startup of the affected source as a major source as of the issuance of the Standard ACDP dated 09/30/2022.

40 CFR part 63 subpart DDDD Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
63.2230	Purpose	Yes	None.	NA
63.2231	Applicability	Yes	None.	NA
63.2232	Affected sources	Yes	None.	NA
63.2233	Compliance dates	Yes	None.	NA
63.2240	Compliance options and operating requirements	No	None.	NA
63.2241	Work practice requirements	No None.		NA
63.2250	General requirements	No	None.	NA
63.2251	Requirements for the routine control device maintenance exemption	No	None.	NA
63.2252	Requirements for process units		Lumber kilns are only subject to initial notification under 40 CFR 63.9(b). No further requirements apply. The ACDP application fulfilled the initial notification requirement as allowed under 40 CFR 63.9(b)(2).	32, 33
63.2260	Initial compliance with the compliance options, operating requirements, and work practice requirements	No	None.	NA
63.2261	Performance tests or other initial compliance demonstrations	No	None.	NA
63.2262	Conducting performance tests and establishing operating requirements	No	None.	NA
63.2263	Initial compliance for a dry rotary dryer	No	None.	NA
63.2264	Initial compliance for a hardwood veneer dryer	No	None.	NA
63.2265	Initial compliance for a softwood veneer dryer	No	None.	NA
63.2266	Initial compliance for a veneer dryer	No	None.	NA
63.2267	Initial compliance for a reconstituted wood product press or board cooler	No	None.	NA
63.2268	Initial compliance for a wet control device	No	None.	NA

Permit No. 207459

Expiration Date: August 1, 2029

40 CFR part 63 subpart DDDD Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
63.2269	Monitoring installation, operation, and maintenance requirements	No	None.	NA
63.2270	Continuous compliance monitoring and data collection	No	None.	NA
63.2271	Continuous compliance with the compliance options, operating requirements, and work practice requirements	No	None.	NA
63.2280	Notifications	No	None.	NA
63.2281	Reports	No	None.	NA
63.2282	Records	No	None.	NA
63.2283	Form and retention of records	No	None.	NA
63.2290	General Provision applicability	No	None.	NA
63.2291	Implementation and enforcement	No	None.	NA
63.2292	Definitions	Yes	None.	NA

40 CFR part 63 subpart DDDDD – National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters

- 53. SSC is a major source of FHAPs. As such, Boiler-3, Boiler-4 and Boiler-5 are subject to the requirements under 40 CFR part 63 subpart DDDDD National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters. Boiler-3 is considered an existing boiler under 40 CFR 63.7490(b) because although the boiler was installed after June 4, 2010, the facility was an area source at the time of installation. Boiler-4 and Boiler-5 will be considered new boilers. Under 40 CFR 63.7495(c)(2), Boiler-3 must be in compliance with this regulation within three (3) years after the facility becomes a major source of FHAP. Boiler-4 and Boiler-5 must be in compliance with this regulation upon startup.
- 54. The 40 CFR part 63 subpart DDDDD requirements that are applicable to Boiler-3, Boiler-4 and Boiler-5 at the facility are identified in the following table:

40 CFR part 63 subpart DDDDD Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
63.7480	Purpose	Yes	None.	NA
63.7485	Applicability	Yes None.		NA
63.7490	Affected source	Yes	Boiler-3 is existing. Boiler-4 and Boiler-5 are new.	NA
63.7491	Exceptions to affected source	No	None.	NA
63.7495	Compliance dates	Yes	Boiler-3 has three (3) years to comply. Boiler-4 and Boiler-5 must comply upon startup.	41
63.7499	Subcategories	Yes	Boilers are designed to burn gas 1 fuels.	NA

Permit No. 207459

Expiration Date: August 1, 2029

40 CFR part 63 subpart DDDDD Citation	part 63 subpart DDDDD Citation Emission limitations, work practice standards, and operating limits Applicab to Source (Yes/No Yes/No Yes		Comments	Permit Condition
63.7500			Conduct a tune-up annually or every 5 years, one-time energy assessment	42
63.7505	General requirements	Yes	None.	43
63.7510	Initial compliance requirements	No	None.	44
63.7515	Subsequent performance tests, fuel analyses, or tune-ups	Yes	Conduct a tune-up annually or once every five (5) years	45
63.7520	Stack tests and procedures	No	None.	NA
63.7521	Fuel analyses, fuel specifications, and procedures	No	None.	NA
63.7522	Emissions averaging	No	None.	NA
63.7525	Monitoring, installation, operation, and maintenance requirements	No	None.	NA
63.7530	Initial compliance with emission limitations, fuel specifications and work practice standards	Yes	None.	46
63.7533	Efficiency credits	No	None.	NA
63.7535	Minimum monitoring data	No	None.	NA
63.7540	Continuous compliance with emission limitations, fuel specifications and work practice standards	Yes None.		47
63.7541	Continuous compliance with emission averaging	No	None.	NA
63.7545	Notifications	Yes	None.	48
63.7550	Reports	Yes	None.	49
63.7555	Records	Yes	None.	50
63.7560	Form and retention of records	Yes	None.	51
63.7565	General Provision applicability	Yes	None.	NA
63.7570	Implementation and enforcement	Yes	None.	NA
63.7575	Definitions	Yes	None.	NA

40 CFR part 63 Subpart CCCCCC – National Emission Standards of Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities –

55. SSC is a major source of FHAPs. The facility has one (1) gasoline dispensing facility. Because the facility is a major source of FHAPs, the area source requirements under 40 CFR part 63 subpart CCCCCC – National Emission Standards of Hazardous Air Pollutants for Source Category: Gasoline Dispensing Facilities do not apply. There is no major source NESHAP for gasoline dispensing facilities.

40 CFR part 63 Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

56. The facility is a major source of FHAPs. The diesel-fired 150 kW emergency generator CIA-1 was installed on or after June 12, 2006 and is considered a new stationary RICE subject to the requirements under 40 CFR part 63 subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines. Under 40 CFR 63.6590(c)(6), a new or reconstructed

emergency or limited use stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of FHAP emissions must meet the requirements of 40 CFR part 63 subpart ZZZZ by meeting the requirements of 40 CFR part 60 subpart IIII. No further requirements apply for these engines under 40 CFR part 63 subpart ZZZZ

57. The 40 CFR part 63 subpart ZZZZ requirements that are applicable to CIA-1 are identified in the following table:

40 CFR Part 63, subpart ZZZZ Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
63.6580	Purpose	Yes	None.	NA
63.6585	Applicability	Yes	None.	NA
63.6590	Applicability	Yes	Subject to limited requirements.	79
63.6600	Emission limitations	No	None.	NA
63.6601	Emission limitations	No	None.	NA
63.6602	Emission limitations	No	None.	NA
63.6603	Emission limitations	No	None.	NA
63.6604	Fuel requirements	No	None.	NA
63.6605	General requirements	No	None.	NA
63.6610	Initial compliance	No	None.	NA
63.6611	Initial performance test	No	None.	NA
63.6612	Initial performance test	No	None.	NA
63.6615	Subsequent performance tests	No	None.	NA
63.6620	Performance test procedures	No	None.	NA
63.6625	Monitoring and maintenance requirements	No	None.	NA
63.6630	Initial compliance	No	None.	NA
63.6635	Continuous compliance	No	None.	NA
63.6640	Continuous compliance	No	None.	NA
63.6645	Notifications	No	None.	NA
63.6650	Reports	No	None.	NA
63.6655	Records	No	None.	NA
63.6660	Record retention	No	None.	NA
63.6665	General provisions	No	None.	NA
63.6670	Implementation and enforcement	No	None.	NA
63.6675	Definitions	No	None.	NA

New Source Performance Standards (NSPS)

40 CFR part 60 subpart Dc – Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units

58. Any steam generating unit as this term is defined under 40 CFR 60.41c that commences construction, modification, or reconstruction after June 9, 1989, and that has a maximum design heat input capacity of greater than or equal to 2.9 MW (10 MMBtu per hour) and no more than 29 megawatts (MW) (100 million British thermal units per hour (MMBtu/hr)) is subject to regulation under 40 CFR part 60 subpart Dc. Boiler B-3, Boiler-4, and Boiler-5 were or will be constructed after the applicability date and have a maximum heat input capacity of 50 MMBtu per hour each. Each boiler is or will be subject to this regulation.

Permit No. 207459

Expiration Date: August 1, 2029

59. The 40 CFR 60 subpart Dc requirements that are applicable to Boiler-3, Boiler-4 and Boiler-5 are identified in the following table:

40 CFR 60 subpart Db Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
60.40c	Applicability and delegation of authority	Yes	Each boiler has a maximum heat input capacity between 10 and 100 MMBtu per hour.	NA
60.41c	Definitions	Yes	Each boiler meets the definition of a steam generating unit.	NA
60.42c	Standards for sulfur dioxide (SO ₂)	No		
60.43c	Standard for particulate matter (PM)	No	No None.	
60.44c	Compliance and performance test methods and procedures for sulfur dioxide	No	None.	NA
60.45c	Compliance and performance test methods and procedures for particulate matter	No	No None.	
60.46c	Emission monitoring for sulfur dioxide	No	None.	NA
60.47c	Emission monitoring for particulate matter	No	None.	NA
60.48c	Reporting and recordkeeping requirements	Yes	Maintain records of the monthly usage of natural gas by each boiler.	40

40 CFR part 60 subpart IIII – Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

- 60. For facilities, 40 CFR part 60 subpart IIII applies to any stationary CI ICE that commence construction after July 11, 2005, where the stationary CI ICE are manufactured after April 1, 2006, and are not fire pump engines. Diesel-fired 150 kW emergency generator CIA-1 meets the definition of an *emergency stationary internal combustion engine* under 40 CFR 60.4219 and was installed in 2016. Facilities that have a 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder must comply with the emission standards for new nonroad CI engines as listed in 40 CFR 89.112 and 40 CFR 89.113.
- 61. Facilities with a stationary CI internal combustion engine with a displacement of less than 30 liters per cylinder must use diesel fuel that meets the requirements of 40 CFR 80.510(b) for nonroad diesel fuel. Currently, the sulfur content of nonroad diesel fuel may not exceed 15 ppm (0.0015 percent by weight).
- 62. Emergency stationary ICE may be operated for maintenance checks and readiness testing for a maximum of 100 hours per calendar year. The federal requirements also allow an emergency stationary ICE to operate for up to 50 hours per year in non-emergency situations, for which the 50 hours are counted as part of the 100 hours per calendar year for maintenance checks and readiness testing. However, the description of an emergency generator in the definition of "Categorically Insignificant Activity" LRAPA title 12, does not allow an emergency generator to be used in this manner in the state of Oregon. The portions of the rule that

Permit No. 207459

Expiration Date: August 1, 2029

conflict with the definition in LRAPA title 12 have not been included in the draft permit. There is no time limit on the use of emergency stationary ICE in emergency situations.

63. The 40 CFR 60 subpart IIII requirements that are applicable to the diesel-fired emergency generator CIA-1 are identified in the following table:

40 CFR part 60 subpart IIII Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
60.4200	Applicability	Yes	None.	NA
60.4201	Emission standards	No	None.	NA
60.4202	Applicability	Yes	2007 model year and later emergency stationary CI ICE with a max engine power less than or equal to 3,000 HP and a displacement of less than 10 liters per cylinder are subject to the emission standards in 40 CFR 89.112 and 40 CFR 89.113.	NA
60.4203	Emission standards	No	None.	NA
60.4204	Emission standards	No	None.	NA
60.4205	Emission standards	Yes	Owners and operators of 2007 model year and later emergency stationary CI ICE with a displacement of less than 30 liters per cylinder must comply with the emission standards in 40 CFR 89.112 and 40 CFR 89.113.	80
60.4206	Emission standards	Yes	The emission standards are applicable for the life of the engine.	82
60.4207	Fuel requirements	Yes	Must use diesel fuel that meets the requirements of 40 CFR 80.510(b) for nonroad diesel fuel.	83
60.4208	Requirements	No	None.	NA
60.4209	Monitoring requirements	Yes	Installation of a non-resettable hour meter.	84
60.4210	Compliance requirements	No	None.	NA
60.4211	Compliance requirements	Yes	None.	85
60.4212	Testing requirements	No	None.	NA
60.4213	Testing Methods	No	None.	NA
60.4214	Notification, reporting, and recordkeeping requirements	Yes	None.	86
60.4215	Special requirements.	No	None.	NA
60.4216	Special requirements	No	None.	NA
60.4217	Special requirements	No	None.	NA
60.4218	General provisions	Yes	None.	NA
60.4219	Definitions	Yes	None.	NA

Toxics Release Inventory (TRI)

64. The Toxics Release Inventory (TRI) is federal program that tracks the management of certain toxic chemicals that may pose a threat to human health and the environment, over which LRAPA has no regulatory authority.

It is a resource for learning about toxic chemical releases and pollution prevention activities reported by certain industrial facilities. Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) created the TRI Program. In general, chemicals covered by the TRI Program are those that cause:

- Cancer or other chronic human health effects;
- Significant adverse acute human health effects; or
- Significant adverse environmental effects.

There are currently over 650 chemicals covered by the TRI Program. Facilities that manufacture, process or otherwise use these chemicals in amounts above established levels must submit annual TRI reports on each chemical. NOTE: The TRI Program is a federal program over which LRAPA has no regulatory authority. LRAPA does not guarantee the accuracy of any information copied from EPA's TRI website.

In order to report emissions to the TRI program, a facility must operate under a reportable NAICS code, meet a minimum employee threshold, and manufacture, process, or otherwise use chemicals in excess of the applicable reporting threshold for the chemical. This facility has not reported any emissions to the TRI program because they do not manufacture, process, or otherwise use chemicals in excess of the applicable reporting thresholds.

COMPLIANCE ASSURANCE MONITORING

- 65. Title 40, part 64 of the Code of Federal Regulations (CFR) contains Compliance Assurance Monitoring (CAM) requirements. These regulations are also codified in LRAPA 35-0200 through 35-0280. CAM requirements apply to any Pollutant Specific Emissions Unit (PSEU) at a part 70 source that meets the following criteria:
 - 65.a. The unit is subject to an emission limitation or standard for a regulated air pollutant;
 - 65.b. The unit uses a control device to achieve compliance with that emission limitation or standard;
 - 65.c. The unit, by itself, has potential pre-control emissions of the regulated air pollutant that would make it a major source (i.e. greater than 100 tons per year for criteria pollutants; greater than 10 tons per year for individual Federal HAPs); and
 - 65.d. The exemptions in 40 CFR 64.2(b) and LRAPA 35-0200(2) do not apply. The exemptions include 65.d.i. Emission limitations or standards proposed by EPA after November 15, 1990 under section 111 (NSPS) or section 112 (NESHAPs);
 - 65.d.ii. Stratospheric ozone protection requirements under Title VI;
 - 65.d.iii. Acid Rain Program requirements;
 - 65.d.iv. Emission limitations or standards or other applicable requirements that apply solely under an emissions trading program approved or promulgated by US EPA;
 - 65.d.v. An emissions cap that meets the requirements in 40 CFR 70.4(b)(12);
 - 65.d.vi. Emission limitations or standards for which a part 70 permit specifies a continuous compliance demonstration method, as defined in 40 CFR 64.1 and LRAPA title 12; and
 - 65.d.vii. Municipally-owned backup utility emission units meeting the requirements under 40 CFR 64.2(b)(2).
- 66. The following table evaluates CAM applicability for all significant emission units at the facility. For Sawmill/Planing Mill Activities (Emission Unit MH), the CAM applicability includes before (B) and after (A) the modification allowed under the modified Standard ACDP based on each pollutant specific emission unit. For dry kilns (Emission Units K1-K12), the CAM applicability is for each individual dry kiln.

Permit No. 207459

Expiration Date: August 1, 2029

Emission Unit	Regulated Pollutant	Uses a Control Device for a Regulated Pollutant	Uncontrolled Potential Emissions Exceed Major Source Threshold	Is there an Emission Limitation or Standard for this Pollutant	Subject to CAM for the Pollutant	Monitoring Frequency
MH (B)	PM	Yes	No	Yes	No	
MH (B)	PM_{10}	Yes	No	Yes	No	
MH (B)	PM _{2.5}	Yes	No	No	No	
MH (A)	PM	Yes	No	Yes	No	
MH (A)	PM_{10}	Yes	No	Yes	No	
MH (A)	PM _{2.5}	Yes	No	Yes*	No	
K1-K12	PM	No	No	Yes	No	
K1-K12	PM_{10}	No	No	Yes	No	
K1-K12	PM _{2.5}	No	No	Yes**	No	
K1-K12	VOC	No	No	Yes	No	
K1-K12	HAP	No	No	No	No	
Boiler-3	PM	No	No	Yes	No	
Boiler-3	PM_{10}	No	No	Yes	No	
Boiler-3	PM _{2.5}	No	No	No	No	
Boiler-3	CO	No	No	No	No	
Boiler-3	NOx	No	No	No	No	
Boiler-3	SO2	No	No	No	No	
Boiler-3	VOC	No	No	No	No	
Boiler-3	HAP	No	No	No	No	
Boiler-4	PM	No	No	Yes	No	
Boiler-4	PM_{10}	No	No	Yes	No	
Boiler-4	PM _{2.5}	No	No	No	No	
Boiler-4	CO	No	No	No	No	
Boiler-4	NOx	No	No	No	No	
Boiler-4	SO2	No	No	No	No	
Boiler-4	VOC	No	No	No	No	
Boiler-4	HAP	No	No	No	No	
Boiler-5	PM	No	No	Yes	No	
Boiler-5	PM_{10}	No	No	Yes	No	
Boiler-5	PM _{2.5}	No	No	No	No	
Boiler-5	CO	No	No	No	No	
Boiler-5	NOx	No	No	No	No	
Boiler-5	SO2	No	No	No	No	
Boiler-5	VOC	No	No	No	No	
Boiler-5	HAP	No	No	No	No	
GDF	VOC	No	No	No	No	
GDF	HAP	No	No	No	No	
MG	PM	Yes	No	Yes	No	
MG	PM_{10}	Yes	No	Yes	No	
MG	PM _{2.5}	Yes	No	Yes	No	

^{*}Emission Points EP05, EP06, and EP08 only.

67. In addition to not being subject to CAM based on the criteria listed in the table above, Boiler-3, Boiler-4, and Boiler-5 are not subject to CAM for FHAPs because these emission units are subject to emission limitations or standards proposed by EPA after November 15, 1990 under section 112 - 40 CFR part 63 subpart DDDDD

^{**}Kilns K5 through K12 only.

(5D) – National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional boilers and Process Heaters.

PLANT SITE EMISSION LIMITS

68. Provided below is a summary of the baseline emissions rate, netting basis, plant site emission limit, and emissions capacity.

	Baseline Emission	Nettin	g Basis		Emission (PSEL)	РТЕ	SER
Pollutant	Rate (TPY)	Previous (TPY)	Proposed (TPY)	Previous PSEL (TPY)	Proposed PSEL (TPY)	(TPY)	(TPY)
PM	25	25	25	24	22	21.7	24
PM_{10}	21	21	21	24	22	21.1	14
PM _{2.5}	NA	13	13	22	22	21.1	9
CO	2	2	2	99	24	24.3	99
NO_X	9	9	9	39	25	24.0	39
SO_2	14	14	14	39	1.1	1.1	39
VOC	10	10	10	249	249	249	39
GHG	4,376	4,376	4,376	76,933	76,933	76,933	74,000

- 68.a. The facility baseline emission rates for PM, PM₁₀, SO₂, NO_X, CO, and VOC were established in the ACDP issued on 01/26/1996. The VOC baseline emission rate was revised in the ACDPs issued on 01/26/2001 and 04/07/2015 based upon more accurate and reliable emission factors for kiln drying under the authority of LRAPA 42-0048(6)(c). The baseline emission rate for PM₁₀ was most recently revised under the ACDP issued on 09/30/2022 as allowed under LRAPA 42-0048(6)(c) because the DEQ emission factors for PM₁₀ from sawmill operations have been changed as reflected in the 10/10/2017 General ACDP for sawmill, planing mill, millwork, plywood manufacturing and veneer drying. A baseline emission rate is not established for PM_{2.5} in accordance with LRAPA 42-0048(3). While DEQ changed the HAP and VOC emission factors for dry kilns in 2021, there is not enough historical information available to reset the VOC baseline emission rate.
- 68.b. The baseline emission rate for GHGs was established under the ACDP issued on 09/20/2022. For GHGs, the baseline emission rate is any consecutive 12 calendar month period during calendar years 2000 through 2010. The facility used the calendar year 2007 to establish their GHG baseline emission rate.
- 68.c. The netting basis for PM, SO₂, NO_X, CO, VOC, and GHGs are the same as the baseline emission rates. The original netting basis for PM_{2.5} was based on a ratio of the PM_{2.5} PSEL to the PM₁₀ PSEL (0.59) multiplied by the PM₁₀ netting basis as established in the ACDP issued on 04/07/2015. The PM_{2.5} netting basis was revised under the ACDP issued on 09/202/2022. The revised netting basis for PM_{2.5} is based on the DEQ emission factors from the 10/10/2017 General ACDP for sawmill, planing mill, millwork, plywood manufacturing and veneer drying.
- 68.d. The PSELs for this facility were previously established under the Standard ACDP issued on 09/20/2022. Under the regulations allowed at that time, PSEL were established one of two ways: (1) For sources with a PTE less than the SER that request a source specific PSEL, the source specific PSEL was set equal to the generic PSEL level, or (2) For sources with PTE greater than or equal to the SER, the source specific PSEL was set equal to the source's PTE, netting basis or a level requested by the applicant, whichever was less, except as allowed by rule. The PSEL for PM, NO_X and SO₂ were previously set at the generic PSEL level. Under the rules adopted by LRAPA on April 11, 2024, sources subject to a Standard ACDP or LRAPA Title V Operating Permit will have their PSEL set equal to the source's PTE, netting basis or a level requested by the applicant, whichever is less, except as allowed by rule.

SIGNIFICANT EMISSION RATES

69. The proposed PSEL is equal to the previously established PSEL. There are no increases in the PSEL being requested with the Type 3 Modification. An analysis of the proposed PSEL increases over the Netting Basis are shown in the following table:

Pollutant	Proposed PSEL (TPY)	PSEL Increase Over Netting Basis (TPY)	PSEL Increase Due to Utilizing Existing Baseline Period Capacity (TPY)	PSEL Increase Due to Modification (TPY)	SER (TPY)
PM	22	0	0	0	25
PM_{10}	22	1	0	0	15
$PM_{2.5}$	22	9	0	0	10
CO	24	22	0	0	100
NO_x	25	16	0	0	40
SO_2	1.1	0	0	0	40
VOC	249	239	0	0	40
GHGs	76,933	72,557	0	0	75,000

UNASSIGNED EMISSIONS AND EMISSION REDUCTION CREDITS

70. The facility has unassigned emissions as shown in the table below. Unassigned emissions are equal to the netting basis minus the source's current PTE, minus any banked emission reduction credits. In accordance with LRAPA 42-0055, unassigned emissions greater than the SER will be reduced to less than the applicable SER at the next Title V Operating Permit renewal if the unassigned emissions are not used for internal netting prior to that date. This facility does not have unassigned emissions greater than the SER.

Pollutant	Proposed Netting Basis (TPY)	PTE (TPY)	Unassigned Emissions (TPY)	Emission Reduction Credits (TPY)	SER (TPY)
PM	25	22	3	0	25
PM_{10}	21	22	0	0	15
$PM_{2.5}$	13	22	0	0	10
CO	2	24	0	0	100
NO_x	9	25	0	0	40
SO_2	14	1.1	13	0	40
VOC	10	249	0	0	40
GHGs	4,376	76,933	0	0	75,000

HAZARDOUS AIR POLLUTANTS/TOXIC AIR CONTAMINANTS

71. Under the Cleaner Air Oregon program, only existing sources that have been notified by LRAPA and new sources are required to perform risk assessments. Clean Air Oregon requires reporting on the emissions of approximately 600 TACs and regulates approximately 260 TACs that have Risk Based Concentrations established in rule. All FHAPs are on the list of approximately 600 TACs. SSC was notified by LRAPA on January 2, 2024, to perform a risk assessment of their TAC emissions. LRAPA approved SSC's Risk

Assessment report on April 12, 2024. SSC conducted a Level 3 Risk Assessment to determine cancer and noncancer risk from TAC emissions. As part of the risk assessment, the facility elected to adjust the acute non-cancer risk by target organ. Based on the results of the Level 3 Risk Assessment summarized below, SSC exceeds the Source Permit Level for Acute Risk and is required to have source risk limits. The primary Acute Risk driver is manganese emissions from Emission Unit MCUT. The draft permit will contain process limitations on certain emission units based on the conditions assumed in SSC's Risk Assessment.

Facility Risk from Toxic Air Contaminants

Risk Type	Exposure	Calculated Risk	Rounded Risk	Source Permit Level	Community Engagement Level
Chronic Cancer Ris	sk				
	Residential	5.090			
	Child	0.016	5	5	25
	Worker	0.270			
Chronic Non-Cance	er Risk				
	Residential	0.199			
	Child	0.003	0.2	0.5	1
	Worker	0.076			
Acute Risk		0.91	1	0.5	1

^{*} Risk values rounded in accordance with OAR 340-245-0200(4)(a) for comparison to the Risk Action Levels or Source Risk Limits.

Acute Risk Adjusted by Target Organ

Tieute Hish Hujusteu Ny 141 Get Olgan								
Risk Type	Target Organ	Calculated Risk	Rounded Risk	Source Permit Level	Community Engagement Level			
Acute Risk								
	Nervous System	0.87	1	0.5	1			
	Respiratory System	0.08	0.1	0.5	1			

72. The table below represents the potential emissions of FHAP/CAO TACs from SSC, excluding potential emissions from Categorically Insignificant Activities.

CAS/DEQ Number	Pollutant	PTE (TPY)	FHAP	CAO TAC
Organics				
75-07-0	Acetaldehyde	30.5	Yes	Yes
107-02-8	Acrolein	0.49	Yes	Yes
71-43-2	Benzene	2.3E-02	Yes	Yes
50-32-8	Benzo[a]pyrene	7.7E-07	Yes	Yes
110-82-7	Cyclohexane	1.6E-02	No	Yes
100-41-4	Ethyl Benzene	9.4E-03	Yes	Yes
50-00-0	Formaldehyde	0.68	Yes	Yes
110-54-3	Hexane	8.0E-02	Yes	Yes
78-79-5	Isoprene	9.5E-04	No	Yes
98-82-8	Isopropylbenzene (Cumene)	1.5E-04	Yes	Yes
67-56-1	Methanol	29.6	Yes	Yes
91-57-6	2-Methyl Naphthalene	6.5E-06	Yes	Yes
91-20-3	Naphthalene	2.1E-04	Yes	Yes
401	PAHs	6.4E-05	Yes	Yes

Permit No. 207459

Expiration Date: August 1, 2029

CAS/DEQ Number	Pollutant	PTE (TPY)	FHAP	CAO TAC
123-38-6	Propionaldehyde	0.32	Yes	Yes
108-88-3	Toluene	0.06	Yes	Yes
526-73-8	1,2,3-Trimethylbenzene	2.5E-04	Yes	Yes
95-63-6	1,2,4-Trimethylbenzene	1.4E-03	Yes	Yes
108-67-8	1,3,5-Trimethylbenzene	5.5E-04	Yes	Yes
540-84-1	2,2,4-Trimethylpentane	5.5E-02	Yes	Yes
1330-20-7	Xylenes	3.1E-02	Yes	Yes
Inorganic Gases				
7664-41-7	Ammonia	2.05	No	Yes
Metals				
7429-90-5	Aluminum and Compounds	2.5E-03	No	Yes
7440-36-0	Antimony	8.6E-06	Yes	Yes
1309-64-4	Antimony Trioxide	3.1E-04	No	Yes
7440-38-2	Arsenic and compounds	7.3E-03	Yes	Yes
7440-39-3	Barium and compounds	1.8E-02	No	Yes
7440-41-7	Beryllium and compounds	2.0E-04	Yes	Yes
7440-43-9	Cadmium and compounds	7.1E-04	Yes	Yes
7440-47-3	Chromium VI, chromate/dichromate	1.0E-03	Yes	Yes
7440-48-4	Cobalt and compounds	5.0E-03	Yes	Yes
7440-50-8	Copper and compounds	3.5E-03	No	Yes
239	Fluorides	8.2E-03	No	Yes
7439-92-1	Lead and compounds	3.3E-04	Yes	Yes
7439-96-5	Manganese and compounds	1.7E-02	Yes	Yes
7439-97-6	Mercury and compounds	1.7E-04	Yes	Yes
1313-27-5	Molybdenum trioxide	2.0E-03	No	Yes
7440-02-0	Nickel compounds, insoluble	3.0E-03	Yes	Yes
7723-14-0	Phosphorus	1.4E-04	Yes	Yes
7782-49-2	Selenium and compounds	1.6E-05	Yes	Yes
7631-86-9	Silica, crystalline (respirable)	6.3E-04	No	Yes
7440-62-2	Vanadium (fume or dust)	1.5E-03	No	Yes
7440-66-6	Zinc and compounds	1.9E-02	No	Yes
	Total (TPY) =	64.0	61.9	64.0

TITLE V PERMIT CHANGE LOG

73. As this is an initial Title V Operating Permit, there is no title V operating permit change log.

GENERAL RECORDKEEPING REQUIREMENTS

74. The permit includes requirements for maintaining records of all testing, monitoring, and production information necessary for assuring compliance with the standards and calculating plant site emissions. The records of all monitoring specified in the Title V Operation Permit must be kept at the plant site for at least five (5) years.

GENERAL REPORTING REQUIREMENTS

75. The permit includes a requirement for submitting semi-annual and annual monitoring reports that include semi-annual compliance certifications. Excess emissions are required to be reported to LRAPA immediately as well as in a logbook attached to the annual report. Emissions fees reports are required annually.

COMPLIANCE HISTORY

76. This facility is regularly inspected by LRAPA and occasionally by other regulatory agencies. The following table indicates the inspection history of this facility since 1979:

Type of Inspection	Date	Results
LRAPA - Full Compliance Evaluation	09/05/1979	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	06/06/1980	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	11/25/1981	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	11/12/1982	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/01/1984	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	11/1984	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/03/1986	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	10/21/1986	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	01/06/1988	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	12/12/1988	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	12/19/1989	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	12/10/1990	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	04/27/1992	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	04/13/1993	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	07/26/1994	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/21/1997	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/25/1998	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	01/28/1999	Not in compliance – NON 1709
LRAPA - Full Compliance Evaluation	02/11/2000	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/06/2001	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	09/09/2003	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/08/2006	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	08/23/2007	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	04/19/2011	Not in compliance – NON 3287
LRAPA - Full Compliance Evaluation	04/18/2014	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	07/18/2019	No evidence of non-compliance
LRAPA - Full Compliance Evaluation	02/23/2024	No evidence of non-compliance

- 77. LRAPA has issued the following violation notices and/or taken the following enforcement actions against this facility:
 - 77.a. On October 17, 1994, LRAPA issued Stipulated Final Order (SFO) No. 94-65 to the facility ordering them to apply for a construction approval and permit modification. The facility fulfilled the order and the SFO was closed.
 - 77.b. On January 30, 1996, LRAPA issued NON No. 1184 to the facility for installing process and pollution control equipment without receiving an authority to construct. Facility was required to not operate the equipment until a permit modification was issued and the violation was closed.
 - 77.c. On February 5, 1999, LRAPA issued NON No. 1709 to the facility for exceeding the dry kiln throughput limits. Facility was required to calculate VOC emissions for wood processed through the dry kilns for a rolling 12-month period to include August and September of 1997 and submit the

Permit No. 207459

Expiration Date: August 1, 2029

- findings to LRAPA. The amount of VOCs emitted was not enough to trigger major source thresholds and the violation was closed.
- 77.d. On February 17, 2006, LRAPA issued NON No. 2855 to the facility for failure to submit report of distillate fuel oil used for the first quarter of 2004. The report was required to have been received by LRAPA on April 30, 2004. Facility submitted report and violation was closed.
- 77.e. On April 19, 2011, LRAPA issued NON No. 3287 to the facility for failure to submit the renewal application in a timely manner. The facility submitted the renewal application and the violation was closed.
- 77.f. On November 15, 2012, LRAPA and the facility entered into Stipulation and Final Order (SFO) No. 12-3404 to address permit violations related to the facility drying in excess of the rate identified in Condition 14.f. of the permit in effect at the time (90,886 MBF of lumber) during the 12-month rolling period ending April 30, 2012 and each subsequent 12-month rolling period. As part of the resolution stipulated in the SFO, the permit was revised to clarify the FHAP limits and the facility was required to pay a civil penalty assessed in the amount of \$2,400. The permit was revised by way of Addendum 1 (Non-PSD/NSR Simple Technical Modification) on December 3, 2012. The facility paid the civil penalty in the amount of \$2,400 and the file was closed.

SOURCE TEST RESULTS

78. The facility is not required to conduct performance testing at this time as the basis for the facility's emission estimates, industry-specific emission factors, appears to be reasonable. LRAPA is not aware of any performance testing conducted at this facility.

PUBLIC NOTICE

79. This permit was on public notice from April 17, 2024 to June 4, 2024. A public hearing was held on May 21, 2024. Comments were submitted in writing during the comment period and in person at the public hearing. After the comment period and hearing, LRAPA reviewed the comments but did not make any substantive changes to the permit.

Public Hearing Summary

On Tuesday, May 21, beginning at approximately 5:30 pm, a virtual public hearing was held for the modification of the Standard Air Contaminant Discharge Permit and an initial Title V Operating Permit for Seneca Sawmill Company, LLC (Source Number 207459) located at 90201 Highway 99N, Eugene, Oregon, 97402. Nine (9) members of the public and the facility were in attendance remotely based upon a count of Zoom logins. Two (2) members of the public provided oral comments during the public hearing.

The LRAPA representatives participating in the public hearing were Travis Knudsen, Executive Director, Max Hueftle, Operations Manager serving as the Public Hearing Officer, Jonathan Wright, Permit Writer, Aaron Speck, Compliance Officer, and Amanda Atkins, Permit Coordinator.

Prior to the public hearing, Jonathan Wright conducted an informational presentation that discussed the changes authorized by the modification of the Standard Air Contaminant Discharge Permit and why two types of permits were in public comment and being discussed at the public hearing. Following the presentation, LRAPA opened the meeting for informal questions from the public. No questions were raised during this period. The public hearing was opened by Max Hueftle, who provided a summary of the purpose and format of the hearing. The rest of the public hearing consisted of a forum for public comments.

Public Comments Summary and LRAPA Responses

Permit No. 207459

Expiration Date: August 1, 2029

[All public comments that were received for this project are a public record and are retained with the public permit review files. For purposes of this summary document, the public comments may have been edited to reduce length or consolidated with similar comments. Public comments that are not related to the review reports, draft permit or proposed permit, such as those comments that are statements of fact or express an opinion, are not presented in this document, and do not require a response from LRAPA.]

Comment 1: There are citation errors for conditions related to 40 CFR 60 subpart IIII because of recent rule changes. Please ensure the issued documents reflect the correct rule language and citations

Response 1: The citation errors have been corrected.

Comment 2: Condition 92 in the TV and Condition 71 in the SACDP have some incomplete sentences. As an example, Condition 92 should probably end with "in accordance with Condition 92.a." Condition 92.a. should probably be adjusted to "For engines with a rated power greater than or equal to 37 KW (50 HP), the engine must be certified for the Tier 2 or Tier 3..."

Response 2: The conditions in the Title V permit and the Standard ACDP have been corrected as suggested.

Comment 3: There is a table error between the SACDP and review report related to required recordkeeping. The permit has the correct table, which lists "Sawmill/Planing Mill Production" to allow the facility to calculate production info (BDT) from other production parameters, as noted below the table

Response 3: The table in the Standard ACDP review report has been replaced with the table in the Standard ACDP to correct this error.

Comment 4: Seneca requests additional language in conditions regarding pressure drop readings to clarify required actions when a baghouse is outside the operating range. Seneca suggests language similar to the underlined text inserted into the following revised Condition 23 of the Title V Permit.

"To demonstrate compliance with Conditions 17 through 22, the permittee must exhaust the particulate matter emissions from Emissions Unit MH to a baghouse(s) and/or a target box whenever this process is operating. The permittee must operate, maintain and calibrate monitoring devices for measuring the pressure drop across each baghouse used to control emissions from these processes. The Page 2 permittee must maintain the pressure drop across each baghouse between 0.5 and 5 inches of water column whenever Emission Unit MH is operating. The permittee may establish alternate operating parameter ranges or values with the approval of LRAPA using the procedures under OAR-340-218. The permittee must measure and record the pressure drop across each baghouse at least once per week while Emission Unit MH is operating. If the pressure drop is outside the operating range listed above, the permittee must complete a daily visual determination of opacity per condition 14 [or and 15?], take corrective action, and document the actions taken until the pressure drop returns to the operating range. Operation of emissions unit MH when the weekly pressure drop is outside of the range for any baghouse is not, by itself, a violation of this permit. [LRAPA 32-005(1), 32-007(1)(b) and 34-016(1)]

Condition 81 of the TV and Condition 21 of the SADCP also need to be modified similarly.

Response 4: LRAPA has modified these conditions, as applicable, in both the Standard ACDP and Title V Operating Permit using the following or similar language:

21. To demonstrate compliance with Conditions 14 through 19, the permittee must exhaust the particulate matter emissions from Emissions Unit MH to a baghouse(s) and/or a target box whenever this process is operating. The permittee must operate, maintain and calibrate monitoring devices for measuring the

Permit No. 207459

Expiration Date: August 1, 2029

Page 31 of 45 Review Report

pressure drop across each baghouse used to control emissions from these processes. The permittee must maintain the pressure drop across each baghouse between 0.5 and 5 inches of water column whenever Emission Unit MH is operating. The permittee may establish alternate operating parameter ranges or values with the written approval of LRAPA. The permittee must measure and record the pressure drop across each baghouse at least once per week while Emission Unit MH is operating. [LRAPA 32-005(1), 32-007(1)(b) and 34-016(1)]

- 21.a. If the pressure drop across a baghouse exceeds the operating parameter range listed in

 Condition 21, the permittee must complete a daily visual emissions survey for that baghouse according to Conditions 12 and 13 for each day that baghouse is operating, take corrective action to return the baghouse to the operating parameter range listed in Condition 21, and document the corrective actions. The permittee may cease conducting a daily visual emissions survey once the baghouse is operating within the operating parameter range listed in Condition 21
- 21.b. If the permittee is unable to conduct the daily visual emissions survey on a particular day due to visual interferences caused by other visible emissions sources (e.g., wildfires) or due to weather conditions such as fog, heavy rain, or snow, the permittee must note such conditions on the monitoring log and make at least three (3) attempts to conduct the visual emissions survey at approximately 2-hour intervals throughout the day.
- 21.c. Operating the baghouse when the pressure drop exceeds the operating parameter range listed in Condition 21 is not considered a violation of an emission limit. However, failure to take corrective action will be considered a violation of this permit.

Comment 5: Please ensure the full name of Seneca Sawmill Company, LLC is listed as the issued entity.

Response 5: The permit and review report now include the full name of the facility, as applicable.

Public Hearing Comment Receipt Log

Oral comments were received from:

John Brown Brittany Quick-Warner brittanyw@eugenechamber.com
--

Public Comment Receipt Log

Written comments were received from:

Bill Powell bpowell@spi-ind.com		
---------------------------------	--	--

PUBLIC COMMENT PROCESS PERMIT CHANGES

80. The following is a list of condition-by-condition changes between the draft Title V permit and the proposed Title V permit as part of the public comment process:

Permit No. 207459

Expiration Date: August 1, 2029

New Permit Condition Number	Old Permit Condition Number	Description of Change	Reason for Change
23	23	Updated to include additional requirements if the baghouse operates outside the approved parametric monitoring range.	Revised at the request of the facility.
81	81	Updated to include additional requirements if the baghouse operates outside the approved parametric monitoring range.	Revised at the request of the facility.

EPA REVIEW

81. The proposed permit was sent to EPA on June 7, 2024 for a 45-day review period. The 45-day EPA review period ended on July 22, 2024 without an objection from EPA to the issuance of the proposed permit.

If the EPA does not object in writing, any person may petition the EPA within 60 days after the expiration of EPA's 45-day review period to make such objection. Any such petition must be based only on objections to the permit that were raised with reasonable specificity during the public comment period provided for in OAR 340-218-0210, unless the petitioner demonstrates that it was impracticable to raise such objections within such period, or unless the grounds for such objection arose after such period

JJW:aa 08/01/2024

Seneca Sawmill Company, LLC Permit No. 207459 Expiration Date: August 1, 2029

EMISSION DETAIL SHEETS

mission Calcu		Boot Proto							
able 2 - Facili	ty Potential Emissions Summary,	Post-Project							
riteria Polluta	ints								
					Polluta	nt (TPY)			
EU ID	Emission Unit Description	PM	PM ₁₀	PM _{2.5}	CO	NO _X	SO ₂	VOC	GHG
Boiler-3	50 MMBtu/hr NG Boiler	0.53	0.53	0.53	8.10	7.88	0.36		25,644
Boiler-4	50 MMBtu/hr NG Boiler	0.53	0.53	0.53	8.10	7.88	0.36	1	25,644
Boiler-5	50 MMBtu/hr NG Boiler	0.53	0.53	0.53	8.10	7.88	0.36	1	25,644
Kilns MH	Twelve (12) Dry Kilns Sawmill/Planing Mill Activities	13.50 5.3	13.50 4.8	13.50 4.8	NA NA	NA NA	NA NA		NA NA
MG	Mill Grinding	1.1	1.1	1.1	NA NA	NA NA	NA NA	249*	NA NA
GDF	Gasoline Dispensing Facility	NA	NA	NA	NA	NA	NA		NA
AIA	Plasma table with torch	0.15	0.15	0.15	NA	0.38	NA		NA
AIA	Paint booth	0.006	0.006	0.006	NA	NA	NA		NA
AIA	Welding and Fabrication	0.031	0.031	0.031	NA	NA	NA		NA
	PSEL Total =	22	22	22	24	25	1.1	249	76,933
	1 022 1001					- 20		2-10	10,000
lote:									
	significant Activities do not count tow								
	elected a facility-wide VOC limit of 2								
ggregate Insigr	nificant Activities add a cumulative 1	TPY to the PS	SEL where a	pplicable for a	a regulated po	ollutant			
IAP/TAC Emiss	SIONS		Federal	CAO					
CAS Number	Pollutant	TPY	HAP	TAC					
Organics	i onutant		: IAF	140					
75-07-0	Acetaldehyde	30.5	Yes	Yes					
107-02-8	Acrolein	0.49	Yes	Yes					
71-43-2	Benzene	2.3E-02	Yes	Yes					
50-32-8	Benzo[a]pyrene	7.7E-07	Yes	Yes					
110-82-7	Cyclohexane	1.6E-02	No	Yes					
100-41-4	Ethyl Benzene	9.4E-03	Yes	Yes					
50-00-0	Formaldehyde	0.68	Yes	Yes					
110-54-3	Hexane	8.0E-02	Yes	Yes					
78-79-5	Isoprene	9.5E-04	No	Yes					
98-82-8	Isopropylbenzene (Cumene) Methanol	1.5E-04 29.6	Yes Yes	Yes Yes					
67-56-1 91-57-6	2-Methyl Naphthalene	6.5E-06	Yes	Yes					
91-20-3	Naphthalene	2.1E-04	Yes	Yes					
401	PAHs	6.4E-05	Yes	Yes					
123-38-6	Propionaldehyde	0.32	Yes	Yes					
108-88-3	Toluene	0.06	Yes	Yes					
526 73 8	1,2,3_Trimethylbenzene	2.5E-04	Yes	Yes					
95 63 6	1,2,4 Trimethylbenzene	1.4E-03	Yes	Yes					
108 67 8	1,3,5 Trimethylbenzene	5.5E-04	Yes	Yes					
540-84-1	2,2,4-Trimethylpentane	5.5E-02	Yes	Yes					
1330-20-7	Xylenes	3.1E-02	Yes	Yes					
norganic Gases		0.05							
7664-41-7	Ammonia	2.05	No	Yes					
Metals 7429-90-5	Aluminum and Compounds	2 55 02	No	Yes					
7429-90-5	Antimony	2.5E-03 8.6E-06	Yes	Yes Yes					
1309-64-4	Antimony Trioxide	3.1E-04	No	Yes					
7440-38-2	Arsenic and compounds	7.3E-03	Yes	Yes					
7440-39-3	Barium and compounds	1.8E-02	No	Yes					
7440-41-7	Beryllium and compounds	2.0E-04	Yes	Yes					
7440-43-9	Cadmium and compounds	7.1E-04	Yes	Yes					
7440-47-3	Chromium VI, chromate/dichromate	1.0E-03	Yes	Yes					
7440-48-4	Cobalt and compounds	5.0E-03	Yes	Yes					
7440-50-8	Copper and compounds	3.5E-03	No	Yes					
239	Fluorides	8.2E-03	No	Yes					
7439-92-1	Lead and compounds	3.3E-04	Yes	Yes					
7439-96-5	Manganese and compounds	1.7E-02	Yes Yes	Yes					
7439-97-6 1313-27-5	Mercury and compounds Molybdenum trioxide	1.7E-04 2.0E-03		Yes					
7440-02-0	Nickel compounds, insoluble	3.0E-03	No Yes	Yes Yes					
7723-14-0	Phosphorus	1.4E-04	Yes	Yes					
7782-49-2	Selenium and compounds	1.6E-05	Yes	Yes					
	Silica, crystalline (respirable)	6.3E-04	No	Yes					
		1.5E-03	No	Yes					
7631-86-9 7440-62-2	Vanadium (fume or dust)								
7631-86-9	Zinc and compounds	1.9E-02	No	Yes					
7631-86-9 7440-62-2			No 61.9	Yes 64.0					
7631-86-9 7440-62-2	Zinc and compounds	1.9E-02							

Seneca Sawmill Com Emission Detail Sheet								
Table 4 - Boiler-3 Pote	ential Emission Calculations							
Boiler Specifications								
Max Heat Input	50	MMBtu/hr						
Heat Value - Natural Ga	1026	MMBtu/MMCF						
Max Hrs Operation	8760	hr/yr						
Criteria Pollutants								
				Potential	Potential	Potential		
		NG Emission	NG Emission	Hourly	Daily	Annual	NG Emission	NG Emission
		Factor	Factor	Emissions	Emissions	Emissions	Factor	Factor
ID	Pollutant	(lb/MMCF)	Units	(lbs/hr)	(lbs/day)	(TPY)	Conversion	Units
PM25	PM/PM ₁₀ /PM _{2.5}	2.5	lbs/MMCF	0.12	2.92	0.53		
CO	Carbon Monoxide	0.037	lbs/MMBtu	1.85	44.40	8.10	38	lbs/MMCF
NOX	Nitrogen Oxides	0.036	lbs/MMBtu	1.80	43.20	7.88	37	lbs/MMCF
SO2	Sulfur Dioxide	1.7	lbs/MMCF	0.08	1.99	0.36		
VOC	VOCs	5.5	lbs/MMCF	0.27	6.43	1.17		
	GHGs (CO ₂ equiv.)	117	lbs/MMBtu	5,855	140,518	25,644		
HAP Emissions								
				Potential	Potential	Potential		
		NG Emission		Hourly	Daily	Annual		
		Factor		Emissions	Emissions	Emissions	Federal	CAO
CAS	Pollutant	(lb/MMCF)	Units	(lbs/hr)	(lbs/day)	(TPY)	HAP	Air Toxic
Organics							<u> </u>	
75-07-0	Acetaldehyde	0.0031	lb/MMcf	1.5E-04	3.6E-03	6.6E-04	Yes	Yes
107-02-8	Acrolein	0.0027	lb/MMcf	1.3E-04	3.2E-03	5.8E-04	Yes	Yes
71-43-2	Benzene	0.0058	lb/MMcf	2.8E-04	6.8E-03	1.2E-03	Yes	Yes
50-32-8	Benzo[a]pyrene	0.0000012	lb/MMcf	5.8E-08	1.4E-06	2.6E-07	Yes	Yes
100-41-4	Ethyl Benzene	0.0069	lb/MMcf	3.4E-04	8.1E-03	1.5E-03	Yes	Yes
50-00-0	Formaldehyde	0.0123	lb/MMcf	6.0E-04	1.4E-02	2.6E-03	Yes	Yes
110-54-3	Hexane	0.0046	lb/MMcf	2.2E-04	5.4E-03	9.8E-04	Yes	Yes
91-20-3	Naphthalene	0.0003	lb/MMcf	1.5E-05	3.5E-04	6.4E-05	Yes	Yes
401	PAHs	0.0001	lb/MMcf	4.9E-06	1.2E-04	2.1E-05	Yes	Yes
108-88-3	Toluene	0.0265	lb/MMcf	1.3E-03	3.1E-02	5.7E-03	Yes	Yes
1330-20-7	Xylenes	0.0197	lb/MMcf	9.6E-04	2.3E-02	4.2E-03	Yes	Yes
Inorganic Gases								
7664-41-7	Ammonia	3.2000	lb/MMcf	1.6E-01	3.7E+00	6.8E-01	No	Yes
Metals		2 2222		0.75.00	0.05.04	4.05.05		.,
7440-38-2	Arsenic and compounds	0.0002	lb/MMcf	9.7E-06	2.3E-04	4.3E-05	Yes	Yes
7440-39-3	Barium and compounds	0.0044	lb/MMcf	2.1E-04	5.1E-03	9.4E-04	No	Yes
7440-41-7	Beryllium and compounds	0.000012	lb/MMcf	5.8E-07	1.4E-05	2.6E-06	Yes	Yes
7440-43-9	Cadmium and compounds	0.0011	lb/MMcf	5.4E-05	1.3E-03	2.3E-04	Yes	Yes
18540-29-9	Chromium VI, chromate/dichromate	0.0014	lb/MMcf	6.8E-05	1.6E-03	3.0E-04	Yes	Yes
7440-48-4	Cobalt and compounds Copper and compounds	0.000084	lb/MMcf	4.1E-06	9.8E-05	1.8E-05	Yes No	Yes
7440-50-8 7439-92-1		0.00085	lb/MMcf	4.1E-05	9.9E-04	1.8E-04 1.1E-04		Yes
7439-96-5	Lead and compounds Manganese and compounds	0.0005 0.00038	lb/MMcf lb/MMcf	2.4E-05 1.9E-05	5.8E-04 4.4E-04	8.1E-05	Yes Yes	Yes Yes
7439-96-5 7439-97-6	Mercury and compounds	0.00038	lb/MMcf	1.9E-05 1.3E-05	4.4E-04 3.0E-04	5.5E-05	Yes	Yes
1313-27-5	Molybdenum trioxide	0.00165	lb/MMcf	8.0E-05	1.9E-03	3.5E-03	No	Yes
365	Nickel compounds, insoluble	0.00165	lb/MMcf	1.0E-04	2.5E-03	4.5E-04	Yes	Yes
7782-49-2	Selenium and compounds	0.0021	lb/MMcf	1.0E-04 1.2E-06	2.8E-05	5.1E-06	Yes	Yes
7440-62-2	Vanadium (fume or dust)	0.00024	lb/MMcf	1.1E-04	2.7E-03	4.9E-04	No	Yes
7440-66-6	Zinc and compounds	0.029	Ib/MMcf	1.4E-03	3.4E-02	6.2E-03	No	Yes
	Total =	3.33	ID/ IVIIVIOI	1	JTLUZ	0.21	0.02	0.71
	iotai –	0.00				0.71	0.02	0.71
	GHG Polated Emission Factors							
	GHG-Related Emission Factors	Natural Gas						
	Pollutant	Natural Gas	GWP					
		(kg/MMBtu)						
	Carbon Dioxide (CO ₂)	53.06	1					
	Methane (CH ₄)	1.0E-03	25					
	Nitrous Oxide (N₂O)	1.0E-04	298					
	. ,							
Notes:								
	actors are based on manufacturer gu	arantees						
	and VOC emissions factors are based		Factors Gas Fired	Boilers, AQ-FF05	(08/01/2011)			
, , , , , , , , , , , , , ,	50 555.55 140.010 410 04500		0.0.0 000 1 1100	, . ((
	are from 40 CFR 98, Tables C-1 and 0	-2						

s ntial Emission Calculations 50 1026 8760	MMBtu/hr MMBtu/MMCF hr/yr						
50 1026	MMBtu/MMCF						
1026	MMBtu/MMCF						
1026	MMBtu/MMCF						
1026	MMBtu/MMCF						
		1					
8760	hr/yr						
			Potential	Potential	Potential		
	NG Emission	NG Emission	Hourly	Daily	Annual	NG Emission	NG Emissio
	Factor	Factor	Emissions	Emissions	Emissions	Factor	Factor
Pollutant	(lb/MMCF)	Units	(lbs/hr)	(lbs/day)	(TPY)	Conversion	Units
PM/PM ₁₀ /PM _{2.5}	2.5	lbs/MMCF	0.12	2.92	0.53		
Carbon Monoxide	0.037	lbs/MMBtu	1.85	44.40	8.10	38	lbs/MMCF
Nitrogen Oxides	0.036	lbs/MMBtu	1.80	43.20	7.88	37	lbs/MMCF
VOCs	5.5	lbs/MMCF	0.27	6.43	1.17		
GHGs (CO ₂ equiv.)	117	lbs/MMBtu	5,855	140,518	25,644		
			Potential	Potential	Potential		
	NG Emission		Hourly	Daily	Annual		
				Emissions			CAO
Pollutant	(lb/MMCF)	Units	(lbs/hr)	(lbs/day)	(TPY)	HAP	Air Toxic
							
,							Yes
							Yes
							Yes
							Yes
,							Yes
							Yes
							Yes
							Yes
							Yes
							Yes Yes
Ayleries	0.0197	ID/IVIIVICI	9.0⊏-04	2.3E-U2	4.2E-03	res	res
Ammonia	3 2000	lb/MMcf	1 6F_01	3.7F+00	6.8F_01	No	Yes
Ammonia	0.2000	ID/IVIIVICI	1.02-01	0.7 L · 00	0.0L-01	140	103
Arsenic and compounds	0.0002	lb/MMcf	9.7E-06	2 3F_04	4 3E-05	Ves	Yes
							Yes
							Yes
							Yes
							Yes
							Yes
	0.00085	lb/MMcf	4.1E-05	9.9E-04	1.8E-04	No	Yes
Lead and compounds	0.0005	lb/MMcf	2.4E-05	5.8E-04	1.1E-04	Yes	Yes
Manganese and compounds	0.00038	lb/MMcf	1.9E-05	4.4E-04	8.1E-05	Yes	Yes
Mercury and compounds	0.00026	lb/MMcf	1.3E-05	3.0E-04	5.5E-05	Yes	Yes
Molybdenum trioxide	0.00165	lb/MMcf	8.0E-05	1.9E-03		No	Yes
Nickel compounds, insoluble	0.0021	lb/MMcf	1.0E-04	2.5E-03	4.5E-04	Yes	Yes
Selenium and compounds	0.000024	lb/MMcf	1.2E-06	2.8E-05	5.1E-06	Yes	Yes
Vanadium (fume or dust)	0.0023	lb/MMcf	1.1E-04	2.7E-03	4.9E-04	No	Yes
Zinc and compounds	0.029	lb/MMcf	1.4E-03	3.4E-02	6.2E-03	No	Yes
Total =	3.33				0.71	0.02	0.71
GHG-Related Emission Factors							
	Natural Gas						
Pollutant	(kg/MMBtu)	GWP					
Carbon Dioxide (CO ₂)	53.06	1					
Methane (CH ₄)	1.0E-03	25					
, ,,							
INITIOUS OXIUE (IN2O)	1.02-04	290					-
actors are based on manufactures	arantees						-
		Footors C== 5	Poilors AO FFOF	(09/04/2044)			-
		ractors Gas Fired	Dollers, AQ-EF05	(06/01/2011)			
	Carbon Monoxide Nitrogen Oxides Sulfur Dioxide VOCs GHGs (CO2 equiv.) Pollutant Acetaldehyde Acrolein Benzene Benze[a]pyrene Ethyl Benzene Formaldehyde Hexane Naphthalene PAHs Toluene Xylenes Ammonia Arsenic and compounds Berium and compounds Cadmium and compounds Cadmium and compounds Chromium VI, chromate/dichromate Cobalt and compounds Cadmium and compounds Cadmium and compounds Calmium and compounds Cadmium and compounds Cadmium and compounds Cobalt and compounds Cobalt and compounds Lead and compounds Lead and compounds Manganese and compounds Mercury and compounds Mercury and compounds Molybdenum trioxide Nickel compounds Vanadium (furne or dust) Zinc and compounds Total = GHG-Related Emission Factors Pollutant Carbon Dioxide (CO2) Methane (CH4) Nitrous Oxide (N2O)	Pollutant	Pollutant	Pollutant	Pollutant	Pollutant	Polititant (IbMMCF) Units (Ibs/Int) (Ibs/Int) (Ibs/Int) (Ibs/Int) (IPM) (IPM

Permit No. 207459

Expiration Date: August 1, 2029

Seneca Sawmill Company - 207459 **Emission Detail Sheets** Table 6 - Boiler-5 Potential Emission Calculations **Boiler Specifications** MMBtu/hr Max Heat Input 50 Heat Value - Natural Ga 1026 MMBtu/MMCF Max Hrs Operation 8760 hr/vr Criteria Pollutants Potential Potential Potential NG Emission NG Emission Daily NG Emission NG Emission Hourly Annual Factor Factor Emissions **Emissions Emissions** Factor Factor ID Pollutant (lb/MMCF) (lbs/day) (TPY) Conversion Units (lbs/hr) Units PM25 PM/PM₁₀/PM_{2.5} 2.5 lbs/MMCF 0.12 2.92 0.53 CO Carbon Monoxide 0.037 lbs/MMBtu 1.85 44.40 8.10 38 lbs/MMCF 7.88 lbs/MMCF lbs/MMBtu 1.80 43.20 37 NOX Nitrogen Oxides 0.036 SO₂ Sulfur Dioxide 1.7 lbs/MMCF 0.08 1.99 0.36 VOC VACs 5.5 lbs/MMCF 0.27 6.43 1 17 GHGs (CO₂ equiv.) 117 lbs/MMBtu 5,855 140,518 25,644 **HAP Emissions** Potential Potential Potential NG Emission Hourly Daily Annual Factor Emissions Emissions **Emissions** Federal CAO Pollutant (lb/MMCF) (lbs/day) (TPY) CAS Units (lbs/hr) HAP Air Toxic Organics 75-07-0 Acetaldehyde 0.0031 lb/MMcf 1.5E-04 3.6E-03 6.6E-04 Yes Yes 107-02-8 Acrolein 0.0027 lb/MMcf 1.3E-04 3.2E-03 5.8E-04 Yes Yes 71-43-2 0.0058 lb/MMcf 2.8E-04 6.8E-03 1.2E-03 Yes Yes Benzene lb/MMcf 50-32-8 0.0000012 5.8E-08 1.4E-06 2.6E-07 Yes Yes Benzo[a]pyrene lb/MMcf 8.1E-03 3.4E-04 1.5E-03 Yes Yes 100-41-4 Ethyl Benzene 0.0069 50-00-0 Formaldehyde 0.0123 lb/MMcf 6.0E-04 1.4E-02 2.6E-03 Yes Yes 110-54-3 Hexane 0.0046 lb/MMcf 2.2E-04 5.4E-03 9.8E-04 Yes Yes 91-20-3 Naphthalene 0.0003 lb/MMcf 1.5E-05 3.5E-04 6.4E-05 Yes Yes lb/MMcf 401 PAHs 0.0001 4.9E-06 1.2E-04 2.1E-05 Yes Yes 108-88-3 lb/MMcf 3.1E-02 5.7E-03 Yes Toluene 0.0265 1.3E-03 Yes 0.0197 lb/MMcf 9.6E-04 2.3E-02 Yes Yes 1330-20-7 Xylenes 4.2E-03 Inorganic Gases lb/MMcf 3.2000 1.6E-01 6.8E-01 Yes 7664-41-7 Ammonia 3.7E+00 No Metals 0.0002 lb/MMcf 9.7E-06 2.3E-04 4.3E-05 Yes Yes 7440-38-2 Arsenic and compounds lb/MMcf 7440-39-3 Barium and compounds 0.0044 2.1E-04 5.1E-03 9.4E-04 No Yes 7440-41-7 0.000012 lb/MMcf 5.8E-07 1.4E-05 Yes 2.6E-06 Yes Beryllium and compounds lb/MMcf 7440-43-9 0.0011 5.4E-05 1.3E-03 Yes Yes Cadmium and compounds 2.3E-04 18540-29-9 Chromium VI, chromate/dichromate 0.0014 lb/MMcf 6.8E-05 1.6E-03 3 0F-04 Yes Yes 7440-48-4 Cobalt and compounds 0.000084 lb/MMcf 4.1E-06 9.8E-05 1.8E-05 Yes Yes 7440-50-8 lb/MMcf 4.1E-05 9.9E-04 1.8E-04 No Copper and compounds 0.00085 Yes 7439-92-1 Lead and compounds 0.0005 lb/MMcf 2.4E-05 5.8E-04 1.1E-04 Yes Yes 7439-96-5 0.00038 lb/MMcf 1.9E-05 4.4E-04 8.1E-05 Yes Manganese and compounds Yes 7439-97-6 lb/MMcf 1.3E-05 3.0E-04 5.5E-05 Yes Mercury and compounds 0.00026 Yes lb/MMcf 8.0E-05 1.9E-03 1313-27-5 Molybdenum trioxide 0.00165 3.5E-04 No Yes 365 Nickel compounds, insoluble 0.0021 lb/MMcf 1.0E-04 2.5E-03 4.5E-04 Yes Yes 7782-49-2 Selenium and compounds 0.000024 lb/MMcf 1.2E-06 2.8E-05 5.1E-06 Yes Yes 7440-62-2 Vanadium (fume or dust) 0.0023 lb/MMcf 1.1E-04 2.7E-03 4.9E-04 No Yes 7440-66-6 lb/MMcf 1.4E-03 3.4E-02 No Zinc and compounds 0.029 6.2E-03 Yes 3.33 0.71 0.02 0.71 **GHG-Related Emission Factors Natural Gas** Pollutant (kg/MMBtu) GWP Carbon Dioxide (CO₂) 53.06 1 Methane (CH₄) 1.0E-03 25 1.0E-04 Nitrous Oxide (N2O) 298 Notes: NOx and CO emission factors are based on manufacturer guarantees PM/PM₁₀/PM_{2.5}, SO₂, and VOC emissions factors are based on DEQ Emission Factors Gas Fired Boilers, AQ-EF05 (08/01/2011) GHG emission factors are from 40 CFR 98. Tables C-1 and C-2 Toxics emission factors are based on the Oregon DEQ 2020 ATEI Combustion EF Tool

Permit No. 207459

Expiration Date: August 1, 2029

Seneca Sawmill Company - 207459 **Future Configuration** Avg cycle (hr) Cycles per yr Max Capacity (12) **Emission Calculations** Dim Kilns Capacity Stud Kilns Capacity DF Table 8 - Drying Kilns Emissions 250.3 991,131 MBF DF/yr 330,000 35 330,000 K1 K5 Hemlock 578,160 MBF Hem/yr 330.000 330.000 K2 K6 This table includes three separate emissions: (1) project emissions at maximum capacity 330,000 330,000 КЗ K7 for determination of the type of change, (2) requested maximum production criteria 330,000 330,000 K4 K8 pollutant and HAP emissions at 540,000 MBF/yr, and (3) Cleaner Air Oregon TAC K9 330 000 330,000 K10 330,000 K11 (1) Project Emissions at Max Capacity 330,000 K12 Max loading of all 12 kilns (bf/cycle) 8 New Stud Kilns at Max Capacity (removed Burnt wood EFs) 3,960,000 Max Capacity Kiln Production MBF DF/yr 660,754 385,440 MBF Hem/yr Max Drying Temp 200 Max Kiln VOC PTE 249 TPY Criteria Pollutants 100% Douglas Fir 100% Hemlock Fir Green Green Kiln Max Kiln PSEL Kiln Max Significant Capacity Annual Emission Capacity Emission Capacity Daily Hourly Factor Emissions Factor Emissions Emissions Emissions Emissions Fmission Rate (lb/MBF) (TPY) (lb/MBF) (TPY) (TPY) (TPY) (TPY) (TPY) (TPY) Pollutant VOC PM25 1.116 369 0.396 76.4 369 249 1.05 0.044 40 25 / 15 / 10 0.03 0.020 6.61 0.050 9.6 9.6 9.6 0.001 (2) Requested Max Production Emissions 540,000 Hem MBF/yr 446,316.5 DF MBF/yr Daily Max Production Equiv. 3.960 MBF/cycle 1584.0 Hem MBF/day 2715.43 DF MBF/day 350 days/yr 24 hrs/day Max Drving Temp 200 Max Kiln VOC PTI 249 TPY Criteria Pollutants 00% Hemlock F 00% Douglas F Green Kiln Max Kiln PSEL Kiln Max Burnt Green Burnt Emission Emission Capacity Emission Emission Capacity Capacity Annual Daily Factor Factor Emission Factor Factor Emissions Emissions Emissions Emissions Pollutant (lb/MBF (lb/MBF) (TPY) (lb/MBF) (lb/MBF) (TPY) (TPY) (TPY) (lb/day) VOC VOC 1.116 0.669 301 0.396 0.238 107.0 301 249 1721.52 PM25 PM/PM₁₀/PM₂ 0.020 0.050 13.5 FHAPs 100% Douglas Fi 100% Hemlock F Burnt Douglas Fir Green Burnt Hemlock Kiln Max Emission Emission Capacity Emission Emission Capacity Capacity Kiln Factor Factor Emission Factor Factor Emissions Emissions Emissions Federal CAO CAS Pollutant (lb/MBF) (lb/MBF) (TPY) (lb/MBF) (lb/MBF) (TPY) (TPY) (TPY) HAP Air Toxic 75-07-0 Acetaldehyde 0.0430 0.0258 11.61 0.1128 0.0677 30.5 30.5 30.5 Yes Yes 0.0008 0.22 0.0011 0.49 0.49 0.49 107-02-8 Acrolein 0.0005 0.0018 Yes Yes 50-00-0 Formaldehyde 0.0025 0.0015 0.68 0.0021 0.0012 0.56 0.68 0.56 Yes Yes 67-56-1 Methanol 0.0754 0.0452 20.36 0.1097 0.0658 29.6 29.6 29.6 Yes Yes 123-38-6 Propionaldehyde 0.0009 0.0005 0.24 0.0012 0.0007 0.32 0.32 0.32 Yes Yes Total = 0.1226 0.0736 0 2276 0.1366 Notes: VOC and HAP emission factors are from DEQ HAP and VOC Emission Factors for Lumber Drying, 2021, AQ-EF09 assuming a maximum kiln temperature of 200°F PM/PM₁₀/PM_{2.5} emission factors are from DEQ Emission Factors Wood Products, AQ-EF02 (08/01/2011) Burnt emission factors are based on the assumption in the application for NC-207459-A20 that burnt wood organic compound emissions are 60% of green wood (3) Kiln Cleaner Air Oregon Toxic Air Contaminant Emissions Requested Max of 540,000 MBF/yr Douglas Fir Hemlock Annual Max of DF or Hemlock **Daily Max** Annual Per Kiln Short-term Per Kiln Green Green Requested Emission Emission Kiln Emission Emission Short-term Daily Annual Factor Factor Factor Emissions Emissions Factor Emissions CAS Pollutant (lb/MBF) (lb/MBF) (lb/MBF) (TPY) (TPY) (lb/MBF) (lb/day) (lb/day) 75-07-0 Acetaldehyd 0.0430 0.1128 0.1128 30.5 2.54 0.1128 178.7 14.9 107-02-8 Acrolein 0.0008 0.0018 0.0018 0.5 0.04 0.0018 2.9 0.2 50-00-0 Formaldehyo 0.0025 0.0021 0.0021 0.6 0.05 0.0025 6.8 0.6 0.0754 0.1097 0.1097 2.47 0.0754 204.7 17.1 67-56-1 Methanol 29.6 0.0009 0.03 123-38-6 Propionaldehyde 0.0012 0.0012 0.3 0.0009 2.4 0.2

Permit No. 207459

Expiration Date: August 1, 2029

Page 38 of 45 Review Report

Seneca Saw	mill Company - 207459										
Emission Ca	lculations										
Table 9 - Sa	wmill/Planing Mill Activities and	Baghouse Emission	ons								
							Annual			Daily	
						PM	PM10	PM2.5	PM	PM10	PM2.5
			Max Annual	Max Daily	Emission	Annual	Annual	Annual	Daily	Daily	Daily
Emission			Throughput	Throughput	Factor	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
Point	Emission Point Description	Pollutant	(BDT/year)	(BDT/day)	(lbs/BDT)	(TPY)	(TPY)	(TPY)	(lb/day)	(lb/day)	(lb/day)
EP-01	Main Baghouse No. 1	PM/PM10/PM2.5	292,500	1,170	0.001	0.15	0.15	0.15	1.17	1.17	1.17
EP-02	Dimension Planer Baghouse	PM/PM10/PM2.5	350,000	1,400	0.001	0.18	0.18	0.18	1.40	1.40	1.40
EP-05	Stud Mill Planer Baghouse No. 1	PM/PM10/PM2.5	160,000	640	0.001	0.08	0.08	0.08	0.64	0.64	0.64
EP-06	Stud Mill Planer Baghouse No. 2	PM/PM10/PM2.5	160,000	640	0.001	0.08	0.08	0.08	0.64	0.64	0.64
EP-08	Planer Trim Sawdust Baghouse	PM/PM10/PM2.5	130,000	520	0.001	0.065	0.065	0.065	0.52	0.52	0.52
EP-11	Rail Chip Bin Target Box	PM	300,000	1,200	0.025	3.75			30.00		
EP-11	Rail Chip Bin Target Box	PM10	300,000	1,200	0.02125	-	3.19			25.50	-
EP-11	Rail Chip Bin Target Box	PM2.5	300,000	1,200	0.02125	-		3.19			25.50
EP-13	Mill Grinding Cyclone and Baghouse*	PM/PM10/PM2.5	5600	cfm	0.005 gr/dscf	1.05	1.05	1.05	5.76	5.76	5.76

40.1

35.6

35.6

Notes

PM/PM₁₀/PM_{2.5} emissions based on based on emission factors from Table 13.2 of the DEQ General ACDP for sawmills, planning mills, millwork, plywood manufacturing, and/or veneer drying (AQGP-010 expiring 10/01/2027)

Total

For the Rail Chip Bin Target Box the DEQ AQGP-010 emission factors are based on a medium efficiency cyclone loading sanderdust. At SSC, railcars receive wood chips with a significant portion of the air stream carrying finer particulate being filtered. As such, the DEQ AQGP-010 emissions factors for PM and PM10 are reduced by a factor of 75% and PM2.5 emissions are assumed to be the same as PM10 emissions.

^{*} EP-13 control emissions from intermittent metal grinding - estimated at outlet concentration of 0.005 gr/dscf and 20 hrs/day

Seneca Sawmill Company, LLC Permit No. 207459 Expiration Date: August 1, 2029

Seneca Sawmill Company - 207459						
Emission Calculations						
Table 12 - Mill Grinding Baghouse 1		Mill Crimdina				
	Toxics Emission Unit ID: Emission Point(s):		Mill Grinding	Cyclone and Ba	abouso	
	Emission Folin(s).	EFIS	Willi Gilliality	Cyclone and ba	ignouse	
General Description of Calculation	n Methodology:					
Estimated PM emissions based or	n mass of material emitted by well functioning baghous heel itself which in turn is normally comprised of alumi			_	inding	
Operating Parameters & Input Assu	mptions:					
Total PM Emission Estimate						
TOTAL FIN EIIISSION ESTINATE						
Airflow (cfm)	5600	ft3/min				
Baghouse exhaust loading	0.005	gr/dscf				
Mass Emitted (PM)	2102.4	lb/yr	175.2			
Operating Days		days/yr				
Operating Hours/Day for Annual EF		hr/day				
Mass Emitted		lb/day				
Max Daily Operation		hr/day				
Cr (VI) %	5%					
Speciated TAC Emissions - Mill A G	rinding basis					
CAS or DEQ ID	TAC	Mass Fraction (mg/kg)	Emissions (lb/yr)	Emissions (lb/day)		lb/lb PM
7429-90-5	Aluminum and Compounds	3080	6.475			0.003
7440-36-0	Antimony and Compounds	8.17				0.000
7440-38-2	Arsenic and Compounds	14.3				0.000
7440-39-3	Barium and compounds	22.5				0.000
7440-41-7	Beryllium and Compounds	0.387				0.000
7440-43-9	Cadmium and Compounds	1.7				0.000
18540-29-9	Chromium VI, chromate and dichromate particulate	145.5				0.000
7440-48-4 7440-50-8	Cobalt and Compounds	4710				0.004
7440-30-8	Copper and Compounds Lead and Compounds	232 4.71				0.000
7439-96-5	Manganese and Compounds	1880				0.000
7439-97-6	Mercury and Compounds	0.844				0.000
365	Nickel compounds, insoluble	1580			GC TAL	0.001
7782-49-2	Selenium and Compounds	1.05			at RL	0.000
7440-22-4	Silver and compounds	0.498				0.000
7440-28-0	Thallium and compounds	0.211				0.000
504	Phosphorus and Compounds	132				0.000
7440-62-2	Vanadium (fume or dust)	134	0.282	0.000772		0.000
7440-66-6	Zinc and Compounds	59.6	0.125	0.000343		0.000
Notes and References:						
Refer to analytical report for Mill A	Grinding.					
Edge Tool Manufacturing. This is ap manufacturing.	be 5% hexavalent chromium, based on EPA's NEI Augmo propriate because grinding steel at the sawmill is similarly deserged to the sawmill of the sawmill is similarly deserged to the sawmill deserged to the sa	ar to metal grin	ding/sharpenir	ng in edge tool		
	/doc/supporting_data/Chromium_speciation_NAICS_2 cludes steel casting finishing and grinding operations, v					

Seneca Sawmill Company	/ - 207459									
mission Calculations										
able 10 - Gasoline Dispe	nsing Facility A	nnual VOC E	missions							
Vehicles Equipped w	ith ORVR in La	ne County =	65	percent						
GDF Activity - VOC Emis	sions (Submer	ged Fill Onl	y)							
	Tank Filling =	7.70	lbs/Mgals	Refueling	- No ORVR =	10.36	lbs/Mgals			
	Breathing =	1.00	lbs/Mgals	Refuel	ling - ORVR =	0.21	lbs/Mgals			
Adjuste	ed Refueling =	3.76	lbs/Mgals							
	Spillage =	0.61	lbs/Mgals							
Hose	Permeation =	0.062	lbs/Mgals							
	Total =	13.13	lbs/Mgals							
	gal/mo	gal/yr								
Max GDF Throughput =	45,000	540,000								
	Potential									-
	Annual									
	Emissions									
Pollutant	(TPY)									
VOC	3.55									
Notes:	., _									
ORVR = Onboard Refueli							0 1 5		(00.10) T ::	D ()
ank filling emission facto				tor Gasoline Marke	eting Operations	at California	a Gasoline Disp	ensing Facilitie	es (2013) - Table	IV-I.
Breathing emission factor		,								
Refueling emission factor										
Refueling emissinon facto						0 111 1 0	J. B.	. =	(0010) T II) #	
Spillage emission factor fr Hose permeation emissio					u .				(2013) - Table VI	

Seneca Sawmill Company, LLC Permit No. 207459

Expiration Date: August 1, 2029

Seneca Sawmill Company - 207459							
Emission Calculations Table 11 - Gasoline Dispensing Facility TAC	Emissions						
Tuble 11 - Gusonile Dispensing Fuelity 120	Limosions						
	Toxics Emission Unit ID:						
	Emission Points:		noina Engility (6.0	100 gallon and 2 i	000 gallan tanka	and diaponaina	aroo)
		Gasonine Disper	ising Facility (0,0	Jou gallon and 2,	Juu galloit taliks	and dispensing a	area)
General Description of Calculation Method	ology:						
- Calculate daily VOC emissions based on TO	CEO Guidanco / Estimating Short To	rm Emission Bat	oc from Fixed Bo	of Tanks TCEO	ADDC 63E0v3	roviced 02/20\ fe	or filling the
tank and EPA AP-42, Table 5.2-7 for vehicle				JOI Taliks, TCLQ	AF DG 0230V3,	1e viseu 02/ 20/ 10	Ji illillig tile
			,.				
- Calculate annual VOC emissions from tanl	k filling, breathing and emptying ca	lculated on GDF	annual tab.				
- Calculate TAC emissions based on TAC Spe					ight fraction for	each TAC from t	rom Profile
691 ("Headspace vapors E10 summer gasol	meruer / and Prome 093 (neads)	dice vapors E10	wilitei gasoilliei	iuei j			
Operating Parameters & Input Assumptions:							
Max. Excluding Tank Fill	11.03	lbs/Mgals					
Daily Gasoline Vehicle Refilling Rate		gal/day (estimat	ie)				
Total Tank Capacity	8000	gallons					
Maximum Tank Filling Rate, FR _M		gal/day					
Tank Contents	Motor gasoline RVP 13			oor pressure gas	oline for AP-42 c	alculations)	
Vapor Molecular Weight, Mv Vapor Pressure Constant, A		lb/lb-mole (AP-4 dimensionless (2 Table 7.1-2) AP-42 Table 7.1-	2)			
Vapor Pressure Constant, A		OR (AP-42 Table		,			
Ideal Gas Constant, R	80.273	((psia × gal)/(lbn	nol × oR)) (TCEC	0)			
Worst Case Liquid Temperature, T _{LA}	554.67	^O R (TCEQ, 95F)					
Daily VOC Emissions			-	. =		(1-25)	
Daily VOC Emissions			(B	3		(1-23)	
Calculate true vapor pressure based on AP-42,	Chapter 7, Eqn. 1-25.	P_{V}	$_{M} = \exp \left A - \left(\frac{B}{T_{L}} \right) \right $	7/			
				4 -]			
True Vapor Pressure, P _{VA}	12.82	psia	Equation 1				
Calculate daily VOC emission from filling tank b	acad an TCEO Equation 1		$L_{MAX} = \frac{M_V \times}{R \times}$	P _{VA} pp			
Calculate daily VOC emission from filling tank b	ased on ICEQ Equation I		$L_{MAX} = {R \times }$	T × FK _M			
Maximum Daily Tank Emission Rate, L _{MAX}	142.8	lb/day					
Calculate daily VOC emissions from vehicle refu							
Maximum Daily Veh. Refuel Emission Rate, F _M	16.5	lb/day					
Total Max. Daily VOC Emissions	150.4	lb/day					
Total Max. Daily VOC Ellissions	155.4	ib/uay					
Annual VOC Emissions (from annual tab)							
Total Annual VOC Emissions	7,092.6	ib/yr					
Annual & Daily TAC Emissions							
		TAC Speciation					
CAS or DEQ ID	TAC	Factor	Emissions (lb/yr)	Emissions (lb/day)			
	-	(lb/lb-VOC)	(ID/ yI)	(ib/day)			
526_73_8	1,2,3_Trimethylbenzene	0.00007058	0.50	0.01			
95 63 6	1,2,4_Trimethylbenzene	0.00039799					
108 67 8 540 84 1	1,3,5 Trimethylbenzene 2,2,4 Trimethylpentane	0.00015565 0.01543471	1.10 109.47	0.02 2.46			
91 57 6	2 Methyl naphthalene	0.00000183		0.00			
71 43 2	Benzene	0.00549442	38.97	0.88			
110_82_7	Cyclohexane	0.00452826					
100 41 4	Ethyl benzene Hexane	0.00141423					
11 <u>0</u> 5 <u>4</u> 3 78 7 <u>9</u> 5	Isoprene, except from vegetative er	0.02169322 0.00026761					
98_82_8	Isopropylbenzene (cumene)	0.00004279					
108 38 3	m Xylene	0.00267533					
91 20 3	Naphthalene	0.00000597					
95 47 6 106 42 3	o Xylene p Xylene	0.00125055 0.00116709					
108 88 3	Toluene	0.013467					
1330-20-7	Xylene (mixture), including m-xylen	0.00509297	36.12	0.81			
Notes and References:							
Notes and References:							
ORVR = Onboard Refueling Vapor Recovery	1						
 Tank filling emission factor from CARB "Rev 				nia Gasoline			
Dispensing Facilities (2013) - Table IV-I (und		., no vapor recov	very system).				
 Breathing emission factor from US EPA AP- Refueling emission factor with no ORVR bas 		·es					
Refueling emission factor with no ORVR base							
Spillage emission factor from CARB "Revise			ons at California	Gasoline			
Dispensing Facilities (2013) - Table VI-I.							
Hose permeation emission factor from CAR		soline Marketin	g Operations at 0	California			
Gasoline Dispensing Facilities (2013) - Table			Canadat' D C	laa biak			
Calculate TAC emissions based on TAC Spec weight fraction for each TAC from from Pro							
("Headspace vapors E10 winter gasoline fu		aancı gasonile	.acı janurioni	2 3 3 3			
, see-person to the see possible to	. ,,, 5.080520.						

Seneca Sawmill Company - 207459								
Emission Calculations								
able 13 - Paint Booth Emissions - Al	Α							
	Toxics Emission Unit ID: F	aint Booth						
	Emission Point(s): E	P15						
General Description of Calculation								
General Bescription of Calculation	ivic triodology.							
Seneca expects only limited paintir	agin the new paint heath	Particulate emissions as	o actimated bacad on a	E0/ overcor	ov/6E9/			
transfer efficiency) and then a 98%								
		,	•					
The PTE is based on the maximum	projected painting and is v	ery conservative consid	ering the booth will be to	or non-proat	uction			
related activities.								
_								
Max Projected Emissions								
ROYAL EXTERIOR ACRYLIC LATEX PA	INT & PRIMER SATIN. NE	JTRAL TINT BASE						
	,		VOC	VOC	VOC	Ì		
/OC Emissions	gal/week	gal/yr	(lb/gal)	(lbs/day)	(lbs/yr)			
Color Paint	5	250	0.367	1.84	91.8			
Primer	5	250	0.367	1.84	91.8			
		=++	****	3.67	183.64			
				0.0.				
				PM	PM			
PM Emissions	Solids (lb/gal)	PM overspray	PM control eff	(lbs/day)	(lbs/yr)			
Color Paint	3.619	35%	98%	0.127	6.3			
Primer	0.0.0	0070	5575	0.127	6.3			
S15 Total				0.25	12.67	İ		
510 Total				0.20	12.07			
	VOC	44 0	1/1					
	Density	9.55	•					
	Donoity	0.00	b/ gai					
					Federal	CAO Air	Emissions	Emission
CAS No.		Chemical		Wt %	HAP	Toxic	(lb/day)	(lb/yr)
37244-96-5	Nepheline syenite			12.5	No	No	(.z.day)	(/) 1/
1314-13-2	Zinc oxide			3	No	Yes	0.0004	0.02
25265-77-4	Propanoic acid, 2-methyl	monoester with 2 2 4-ti	rimethyl-1 3-pentanediol	3	No	No	0.000-	0.02
68439-57-6	Sodium C14-C16 olefin s		saryr 1,0 portariodioi	0.3	No	No	1	
00-100 07 0	354.4III 314 310 310IIII 3			0.0	140	110		
Concentrations from SDS. Zn oxide lister	d 4 F0/							

Emission Calculations							
Table 14 - Electric Arc Weldin	g Emissions - AIA						
	Toxics Emission Unit ID:						
	Emission Points:			b Shop Weldin			
	Description:	Metal TAC en	nissions from 6	electric arc wel	ding at truck and	l fab shop	
ab & Truck Shop Welding							
	Electrode Type	FCAW F71T					
	Maximum Annual Usage, lb/yr						
	Maximum Daily Usage, lb/day						
		EF (lbs/1000				Emissions	Emission
CAS or DEQ ID	TAC	lbs)				(lb/yr)	(lb/day)
Criteria Pollutant	PM / PM10 / PM2.5	12.2				62,708	0.18
mona i onatani		12:2				02.100	0
18540-29-9	Chromium VI, chromate and dichromate particulate	0.002				1.03E-02	3.00E-(
7440-48-4	Cobalt and Compounds	0.001				5.14E-03	
7439-96-5	Manganese and Compounds	0.662				3.40E+00	
365	Nickel compounds, insoluble	0.004				2.06E-02	
700	THORE COMPOUNDS, INCOME	0.001				2.002 02	0.002
CAS or DEQ ID	TAC	PM10 EF (lb/1000 lb)	Fume Correction Factor	Wt% per SDS (max of any column)	SDAPCD Calculated EF (lbs/1000 lbs)	Emissions (lb/yr)	Emissior (lb/day)
7429-90-5	Aluminum and Compounds	12.2		8%	0.98	5.02E+00	1.46E-0
1309-64-4	Antimony trioxide	12.2	1		0.12		
7440-39-3	Barium and compounds	12.2	1		1.71	8.78E+00	
239	Fluorides	12.2	1		3.17		4.76E-
7440-50-8	Copper and compounds	12.2	1		0.24		
7631-86-9	Silica, crystalline (respirable)	12.2	1		0.244		
1313-27-5	Molybdenum Trioxide	12.2	1	3.0003%	0.37	1.88E+00	5.49E-
Notes:				1			
	Q 2020 Air Toxics Emissions Inventory Welding Emissi Operations methodology to develop emissions estima						tion
	ydenum is reported as molydenum trioxide. The perce Aluminum and Compounds".	entages for for	Aluminum Ox	ride and Alumi	num from the S	DS were add	ed
	nated with "and compounds" and Fluorides are reporte ent is made in the "Wt% per SDS" column.	ed as the sum o	of all forms of	the chemical,	expressed as th	e inorganic	

Seneca Sawmill Company - 2074 Emission Calculations															
Fable 15 - Metal Cutting Emission	s (Plasma and Oxyfuel To	orch) - AIA													
	Emission Unit ID	MCUT													
	Emission Point														
			v-acetylene ton	ch cutting of mel	tal in the fabricat	ion shop									
		r idomid dirid ox	y doory lone ton	on outling or mo	ar iii tiio labiioat	юн онор.									
General Description of Calculation	Methodology														
PM and metal emissions are based manganese, and ND-1.4% copper. NOx emissions are based on the sa NO and 8% NO2 based on Bromse et al.	We are conservatively us ame reference, with the N	ng the upper er Ox emissions at	d of range. The 3.1 Liters/min	fume generation	on rate was sele eel being the ba	cted to be 0.5% asis. 3.1 L/min e	for semi-dr	y because the wa	ater reservoir is di ng ideal gas volur	rectly below ne and a mol	the plate be ecular weigl	ing cut. ht based o	n 92%		
Plasma Torch Operating Hours		hrs/day max			Molecular Wt.	g/mol									
		hrs/yr max			NO	30									
Oxy-Acetylene Torch Operating Hou		hrs/day max			NO2	46									
DM/DM /DM E. : :	50	hrs/yr max			Mix (92% / 8%)	31.3									
PM/PM ₁₀ /PM _{2.5} Emissions Unit Identification	Cutting Technique	Metal Type	Metal Thickness (Inches)	Kerf (Inches)	Metal Cutting Speed (IPM)	Density (g/cm ³)	Density Conversion (lb/in³)	Fume Generated (% o Material Removed)	PM/PM _{2.5} /PM ₁₀ Emission Factor (lb/inch)	Metal Feed Rate (IPH)	PM Emissions (lb/hr)	Daily Cutting Hours	Annual Cutting Hours	PM Emissions (lb/day)	PM Emission (lb/yr)
Plasma	Semidry	Mild steel	0.0359	0.01	200	7.84	0.28	0.5	0.000001	12000	0.01	5	500	0.03	3.05
Plasma	Semidry	Mild steel	0.125	0.06	148	7.84	0.28	0.5	0.000011	8880	0.09	5	500	0.47	47.16
Plasma	Semidry	Mild steel	0.25	0.075	110	7.84	0.28	0.5	0.000027	6600	0.18	5	500	0.88	87.63
Plasma	Semidry	Mild steel	0.375	0.099	110	7.84	0.28	0.5	0.000053	6600	0.35	4	500	1.39	173.50
Plasma	Semidry	Mild steel	0.75	0.127	75 65	7.84 7.84	0.28	0.5	0.000135	4500	0.61	3	500	1.82	303.50
Plasma Plasma	Semidry Semidry	Mild steel Mild steel	1.75	0.175 0.081	11.22	7.84	0.28	0.5 0.5	0.000248 0.000201	3900 673.2	0.97	2	500 500	1.93 0.27	483.27 67.57
Flasilia	Semilary	•		•				•			0.14	, 2	300		67.37
Oxy-acetylene	Semidry	Mild steel	2	0.081	10.63	7.84	0.28	0.5	0.000229	637.8	0.15	1	50	0.15	7.32
Oxy-acetylene	Semidry	Mild steel	2.75	0.091	9.055	7.84	0.28	0.5	0.000354	543.3	0.19	1	50	0.19	9.63
Oxy-acetylene	Semidry	Mild steel	4	0.091	7.055	7.84	0.28	0.5	0.000515	423.3 Wt Avg.	0.22 0.25	8	50 1200	2.03	10.91 304.05
NOx Emissions															
Unit Identification	Cutting Technique	Metal Type	Metal Thickness (Inches)	NOx (L/min)	NOx (lb/hr)	Daily Cutting Hours	Annual Cutting Hours	NOx Emissions (lb/day)	NOx Emissions (lb/yr)						
Plasma	Semidry	Mild steel	0.0359	0.775	0.143	5	500	0.72	71.58	Plasma					
Plasma	Semidry	Mild steel	0.125	1.86	0.344	5	500	1.72	171.79	Plasma					
Plasma	Semidry	Mild steel	0.25	2.325	0.429	5	500	2.15	214.73	Plasma					
Plasma	Semidry	Mild steel	0.375	3.1	0.573	4	500	2.29	286.31	Plasma					
Plasma	Semidry	Mild steel	0.75	3.875	0.716	3	500	2.15	357.89	Plasma					
Plasma	Semidry	Mild steel	1	4.65	0.859	2	500	1.72	429.47	Plasma					
Plasma	Semidry	Mild steel	1.75	6.2	1.145	2	500	2.29	572.62	Plasma					
Ovy acetylane	Semidry	Mild steel	2	6.975	1.288	1	50	1.29	64.42	Ovy aget: les					
Oxy-acetylene		Mild steel Mild steel	2.75	9.3	1.288	1	50	1.72	85.89	Oxy-acetyler					
Oxy-acetylene	Semidry									Oxy-acetyler					
Oxy-acetylene	Semidry	Mild steel	4	12.4 Wt Avg.	2.290 0.63	8	50 1200	2.29 5.05	114.52 758.23	Oxy-acetyler	ie				
HAP / TAC Emissions Using mild steel factors															
CAS No.	Pollutant	Fume Percent	lb/lb PM	lb/hr cut	TAC Emissions (lb/day)	TAC Emissions									
						(lb/yr) 30.40	┨								
7/30.06.5	Manganese and compound	10.0%	0.100												
7439-96-5 7440-50-8	Manganese and compound Copper and compounds	10.0%	0.100 0.014	0.025	0.203 0.028	4.26									

Seneca Sawmill Company, LLC Permit No. 207459 Expiration Date: August 1, 2029

Attachment B - Emission Calcu	ulations			
able 16 - Diesel Emergency (Generator Emissions - CIA			
	Toxics Emission Unit ID:			
	Emission Points:			
	Description:	Office Diesel En	nergency Genera	ator
Operating Parameters & Input	t Assumptions:			
Fuel Usage Rate	11.7	gal/hr		
Max. Daily Operating Hours		hrs/day	0.0468	Mgal/day
1ax Annual Operating Hours	100	hrs/yr	1.17	Mgal/yr
CAS or DEQ ID	TAC	EF (lbs/M gal)	Emissions (lb/yr)	Emissions (lb/day)
06-99-0	1,3-Butadiene	2.17E-01	2.54E-01	1.02E-02
1-57-6	2-Methyl naphthalene	1.23E-02	1.44E-02	5.76E-04
3-32-9	Acenaphthene	7.35E-04	8.59E-04	3.44E-05
08-96-8	Acenaphthylene	8.10E-04	9.47E-04	3.79E-05
5-07-0	Acetaldehyde	7.83E-01	9.47E-04 9.16E-01	3.67E-02
5-07-0 07-02-8	Acrolein	3.39E-02	9.16E-01 3.97E-02	1.59E-03
07-02-6 664-41-7	Ammonia	2.90E+00	3.39E+00	1.36E-01
004-41-7 20-12-7	Anthracene	2.90E+00 4.52E-04		
			5.29E-04	2.12E-05
440-36-0	Antimony and compounds	3.18E-04	3.72E-04	1.49E-05
440-38-2	Arsenic and compounds	2.77E-04	3.24E-04	1.30E-05
440-39-3	Barium and compounds	3.74E-04	4.37E-04	1.75E-05
6-55-3	Benz[a]anthracene	4.85E-05	5.68E-05	2.27E-06
1-43-2	Benzene	1.86E-01	2.18E-01	8.72E-03
0-32-8	Benzo[a]pyrene	1.44E-05	1.68E-05	6.73E-07
05-99-2	Benzo[b]fluoranthene	4.44E-05	5.19E-05	2.08E-06
92-97-2	Benzo[e]pyrene	3.29E-05	3.85E-05	1.54E-06
91-24-2	Benzo[g,h,i]perylene	2.19E-05	2.56E-05	1.02E-06
07-08-9	Benzo[k]fluoranthene	1.31E-05	1.53E-05	6.11E-07
440-41-7	Beryllium and compounds	4.77E-06	5.58E-06	2.23E-07
140-43-9	Cadmium and compounds	8.08E-05	9.45E-05	3.78E-06
8540-29-9	Chromium VI, chromate and dichromate particulate	3.51E-04	4.10E-04	1.64E-05
18-01-9	Chrysene	6.70E-05	7.84E-05	3.14E-06
140-48-4	Cobalt and compounds	1.58E-05	1.84E-05	7.37E-07
140-50-8	Copper and compounds	5.02E-04	5.87E-04	2.35E-05
3-70-3	Dibenz[a,h]anthracene	1.04E-06	1.21E-06	4.85E-08
00	Diesel particulate matter	1.70E+01	1.99E+01	7.94E-01
00-41-4	Ethyl benzene	1.09E-02	1.28E-02	5.10E-04
06-44-0	Fluoranthene	3.70E-04	4.33E-04	1.73E-05
5-73-7	Fluorene	2.18E-03	2.56E-03	1.02E-04
0-00-0	Formaldehyde	2.71E+00	3.17E+00	1.27E-01
10-54-3	Hexane	2.69E-02	3.15E-02	1.26E-03
647-01-0	Hydrochloric acid	1.86E-01	2.18E-01	8.72E-03
93-39-5	Indeno[1,2,3-cd]pyrene	1.07E-05	1.25E-05	5.01E-07
439-92-1	Lead and compounds	3.64E-04	4.25E-04	1.70E-05
439-96-5	Manganese and compounds	4.20E-04	4.91E-04	1.97E-05
439-97-6	Mercury and compounds	1.51E-05	1.77E-05	7.07E-07
1-20-3	Naphthalene	2.64E-02	3.08E-02	1.23E-03
65	Nickel compounds, insoluble	1.82E-04	2.13E-04	8.53E-06
98-55-0	Perylene	1.18E-06	1.38E-06	5.51E-08
5-01-8	Phenanthrene	4.54E-03	5.31E-03	2.13E-04
04	Phosphorus and compounds	8.40E-03	9.83E-03	3.93E-04
782-49-2	Selenium and compounds	3.76E-04	4.40E-04	1.76E-05
440-22-4	Silver and compounds	4.80E-05	5.62E-05	2.25E-06
440-28-0	Thallium and compounds	2.40E-04	2.81E-04	1.12E-05
08-88-3	Toluene	1.05E-01	1.23E-01	4.93E-03
330-20-7	Xylene (mixture), including m-xylene, o-xylene, p-xy		4.96E-02	1.98E-03
440-66-6	Zinc and compounds	5.23E-03	6.11E-03	2.45E-04
Notes:	Zino and compounds	J.23E-03	U. I I ⊑-U3	2.706-04
	Q 2020 Air Toxics Emissions Inventory Combustion Em Factors for Fuel Combustion, Table B-2 Internal; DEQ			
AB2566 - Detault Emission	ractors for ruer combustion, Table B-2 Internal; DEQ	approved Data (enter EF Analys	ors IVIdy 2022.